
ALICA Documentation
Release 0.3.3

Marcel Stefko, Kyle M. Douglass

Jul 13, 2018





Contents

1 Quickstart 3

2 Parameter Explanations 9

3 Photodynamics Simulations with ALICA and SASS 11

4 Extending ALICA 19

5 Frequently Asked Questions 25

6 Javadoc 27

7 About 53

8 Acknowledgments 55

9 See Also 57

i



ii



ALICA Documentation, Release 0.3.3

Automated Laser Illumination Control Algorithm

Contents 1



ALICA Documentation, Release 0.3.3

2 Contents



CHAPTER 1

Quickstart

This page describes a brief tutorial on how to install and begin working with ALICA. It necessarily avoids any details
on how ALICA works; instead, its focus is on helping you become acquainted with working with ALICA.

1.1 Installation

1.1.1 Micro-Manager 2

If Micro-Manager 2.0 or greater is not already installed on your machine, then follow the steps in this section.

1. Navigate to https://valelab4.ucsf.edu/~MM/nightlyBuilds/2.0.0-gamma/Windows/ and download the latest
nightly build for your system. (Note that ALICA currently only works with Micro-Manager 2.0gamma, NOT
2.0beta.)

2. Install Micro-Manager by following the directions provided on the previously mentioned website. Make note of
the installation directory, which on Windows is usually something like C:\Program Files\Micro-Manager-2.0.

1.1.2 ALICA

ALICA is distributed as a .jar file and is easily installed by copying the file into the Micro-Manager plugins folder.

1. Navigate to https://github.com/MStefko/ALICA/releases and download the ALICA*.jar file corresponding to
the latest release.

2. Copy ALICA*.jar to the MM2ROOT/mmplugins directory, where MM2ROOT/ is the Micro-Manager installation
directory.

3. Navigate to https://github.com/LEB-EPFL/ALICA_ACPack and download the ALICA_ACPack*.jar file corre-
sponding to the latest release.

4. If you are using ALICA_ACPack version 0.2.0 or later, you will need to update a few jars that Micro-
Manager uses. Download imglib2-5.3.0.jar from http://maven.imagej.net/service/local/repositories/releases/
content/net/imglib2/imglib2/5.3.0/imglib2-5.3.0.jar and imglib2-roi-0.5.1.jar from http://maven.imagej.net/

3

https://www.micro-manager.org/wiki/Version_2.0
https://valelab4.ucsf.edu/~MM/nightlyBuilds/2.0.0-gamma/Windows/
https://github.com/MStefko/ALICA/releases
https://github.com/LEB-EPFL/ALICA_ACPack
http://maven.imagej.net/service/local/repositories/releases/content/net/imglib2/imglib2/5.3.0/imglib2-5.3.0.jar
http://maven.imagej.net/service/local/repositories/releases/content/net/imglib2/imglib2/5.3.0/imglib2-5.3.0.jar
http://maven.imagej.net/service/local/repositories/releases/content/net/imglib2/imglib2-roi/0.5.1/imglib2-roi-0.5.1.jar
http://maven.imagej.net/service/local/repositories/releases/content/net/imglib2/imglib2-roi/0.5.1/imglib2-roi-0.5.1.jar


ALICA Documentation, Release 0.3.3

service/local/repositories/releases/content/net/imglib2/imglib2-roi/0.5.1/imglib2-roi-0.5.1.jar and place them in
the pluginsMicro-Manager folder inside the Micro-Manager installation directory. Delete the older versions of
imglib2 and imglib2-roi that are already located there.

5. Copy ALICA_ACPack*.jar to the MM2ROOT/mmplugins directory, where MM2ROOT/ is the Micro-Manager
installation directory.

6. Verify that ALICA was installed and recognized by starting Micro-Manager and selecting Plugins > Device
Control > ALICA in the Micro-Manager menu bar. (ALICA will not be located in the ImageJ menu bar.) The
ALICA Setup window should appear, which will verify that ALICA is properly installed.

1.2 Using ALICA

ALICA reads an image stream from Micro-Manager and uses these images to estimate the real-time density of fluo-
rescence emitting molecules within the microscope’s field of view. As the estimated density of emitting fluorophores
changes (due to bleaching or changes in the sample, for example), ALICA will automatically adjust the laser power to
maintain a set emitter density.

1.2.1 Step 1: Select an image source

First, select a source for the image stream that ALICA will analyzer. Your options include

1. the Micro-Manager core, which contains unprocessed images from the camera;

2. the Micro-Manager Live mode, which contains the images that appear in Micro-Manager’s Snap/Live View
window. These images may be preprocssed by Micro-Manager’s On-The-Fly Image Processors;

3. the next Multi-Dimensional Acquisition.

4 Chapter 1. Quickstart

http://maven.imagej.net/service/local/repositories/releases/content/net/imglib2/imglib2-roi/0.5.1/imglib2-roi-0.5.1.jar
http://maven.imagej.net/service/local/repositories/releases/content/net/imglib2/imglib2-roi/0.5.1/imglib2-roi-0.5.1.jar


ALICA Documentation, Release 0.3.3

We suggest choosing the Live mode option when you are just starting to use ALICA because it is the most interactive
option. During actual acquisitions, MM Core is recommended due to its superior performance, unless you need to
perform some image preprocessing using the MicroManager processing pipeline before feeding the images to ALICA.

1.2.2 Step 2: Select and configure the analyzer

An analyzer is an algorithm that estimates the density of fluorophores that are visible in an image. At the time of this
writing, ALICA included the following analyzers

1. a spot counter, which counts the number of fluorescent spots in the images;

2. AutoLase, an algorithm which estimates fluorophore densities by identifying the single pixel within the field of
view that has been above a given threshold for the longest time;

3. QuickPALM, a tool which identifies fluorescent spots and then performs a subpixel localization of each spot;

4. an integrator, which simply computes the integrated intensity of an image.

The spot counter performs well for many samples and also offers a live view which provides real-time visual feedback
of which spots it identifies.

1.2.3 Step 3: Select and configure the controller

A controller is a feedback loop that adjusts the laser power so that the estimated density of emitters remains as close as
possible to a previously determined set point. The difference between the current estimate and the set point is called
the error signal. The choice of controllers includes

1. a proportional-integral (PI) controller, which responds both proportionately to the error signal and to the time
integral of the error signal;

2. a manual controller, which gives control over the laser to the microscopist;

1.2. Using ALICA 5

http://imagej.net/QuickPALM


ALICA Documentation, Release 0.3.3

3. an inverter, which adjusts the laser by a factor that is proportional to the inverse of the error signal (e.g. high
error signal > low laser power and vice versa);

4. a self-tuning (PI) controller, which uses a pulse of laser light to estimate the optimum values for the P and I
parameters.

We recommend starting with manual control to first learn how the analyzer responds to changes in your sample. Once
you understand a little bit about this, you can try a self-tuning PI controller. The self-tuning PI controller can only
tune itself when the sample is already under STORM or PALM imaging conditions. For direct STORM, this means
that the fluorophores should already be blinking.

1.2.4 Step 4: Select the device to be controlled

A device and its property that corresponds to output power needs to be specified for the controller to actually do
something. In most STORM and PALM experiments, the density of emitters is typically controlled using an ultraviolet
laser. To be able select this laser, it needs to be added to the current Micro-Manager hardware configuration. Once the
laser is selected, choose its power setting from the next drop-down menu.

To prevent a run-away laser illumination, you can set the maximum power for the controller. We typically do not set
this above a few tens of milliWatts, but the actual value depends on the sample.

If you are testing ALICA and do not want to select a device, then check the Virtual checkbox. This will instruct
the controller that it should not affect the state of any hardware devices. Checking it will allow you to test ALICA’s
analyzers without performing any hardware control.

1.2.5 Step 5: Start the monitor

When ready, click Start in the ALICA Setup window. This will open the ALICA monitor window, which will look
similar to the image below.

6 Chapter 1. Quickstart



ALICA Documentation, Release 0.3.3

In the upper left, you can find a readout on the currently selected analyzer, controller, and laser. In this example image,
the analyzer is the SpotCounter, controller is a PI controller, and the device is actually not set, i.e. the Virtual checkbox
was checked in the ALICA Setup window.

Below this box you can set the desired density of fluorophores in the New setpoint: text box. After typing in a new
value, click Set to activate the change. If you draw a region of interest (ROI) in the Snap/Live View window, you
can set ALICA to only analyze this region by clicking the Set ROI button. You can also drag this ROI around the the
Snap/Live View window in real-time and ALICA will respond in real-time.

Moving further down the left-hand side of the ALICA Monitor window, you will find information on the number of
frames processed by the analyzer per second and the time taken to analyze the last frame. You may also close the
ALICA Monitor window in this section by clicking the Stop button.

In the middle of the ALICA Monitor window on the top is a real-time plot of the output of the analyzer as a function
of time. The units on the y-axis of this plot will depend on the output of the analyzer. For example, the SpotCounter
outputs a number of spots, but AutoLase will output the longest “On” pixel in units of time.

Below this plot you may update the analyzer settings.

Finally, on the far right of the ALICA Monitor window is a status bar that reflects the current output of the laser. The
maximum value of the status bar is the maximum value set in the ALICA Setup window.

1.2.6 Step 6: Start taking images

When you are ready, start taking images using the source of images that you set in the ALICA Setup window. For
example, if you selected Live mode, then all you need to do is start a Live stream in Micro-Manager. The different
parts of the ALICA Monitor window will begin to reflect the output of the analyzer and controller once images begin
arriving in this stream.

If the controller was set to Manual, try adjusting the ultraviolet laser power and watching how the output of the analyzer
changes in response. If you are using a PI controller, you may notice a slight oscillation in the readout of the analyzer.
This is caused by the particular values you have set for P and I.

If you selected a self-tuning PI controller, Micro-Manager will pulse the laser a short time after the acquisition has
started and observe how the density of fluorophores changes in response to the pulse. It will then determine the

1.2. Using ALICA 7



ALICA Documentation, Release 0.3.3

optimum values for P and I. You may set the set point after the controller has tuned itself.

1.3 What’s next?

Tuning the parameters in ALICA may take some time and experimentation, even with the self-tuning controller.
Tuning may not be easy to do on real samples due to time constraints and costly sample preparations. To ease this
process, we created a simulation environment to help you learn how ALICA works.

You may read about how to setup this environment on the simulation page.

8 Chapter 1. Quickstart

simulation.html


CHAPTER 2

Parameter Explanations

2.1 Image Source

ALICA offers 3 different options of acquiring images from MicroManager:

• MM Core Images are drawn directly from the circular buffer. This method is the fastest, and recommended in
most cases, since it can smoothly function whenever the camera is acquiring images.

• Live mode Images are drawn from the Datastore associated with the current live mode view. Use this if you
wish to do some on-the-fly processing using the MicroManager pipeline, before passing the image to Analyzer.

• Next acquisition Images will be drawn from the Datastore associated with the first acquisition that is started
afterwards.

2.2 ROI

Using the live view, you can select a region of interest to constrain the analyzed area (for example if the density of
fluorophores is uneven, or the analysis of full image takes too long).

2.3 Controller tick rate

This value in milliseconds defines how often the Controller queries the Analyzer, and adjusts the laser output.

2.4 Laser

• Max Power Maximal power setpoint of the laser. ALICA will not adjust the laser power above this value.

9



ALICA Documentation, Release 0.3.3

• Deadzone [%] The minimum adjustment to the power setpoint that the controller may make as a percentage
of the current value. Adjustments to the laser by an amount less than this are not permitted, which prevents
unnecessary fine-tuning of the laser.

• Virtual If checked, the output is not passed to the device. Useful for debugging or preview of parameters.

10 Chapter 2. Parameter Explanations



CHAPTER 3

Photodynamics Simulations with ALICA and SASS

Extensibility is a core design principle of ALICA. If the builtin components do not suit the needs of your application,
then you can write your own set of tools using the frameworks of ALICA and Micro-Manager. Alternatively, you may
find that ALICA already suits your needs but you need to do some testing in a controlled environment prior to using
it in your measurements. We developed the STORM Acquistion Simulation Software (SASS) to assist in both of
these situations.

This document explains how to setup SASS to test ALICA in a fully controlled simulation environment.

3.1 Install the Simulation Environment

SASS and ALICA are both distributed as Java .jar files. In addition to these you will need to download our Image
Injector plugin, a Micro-Manager plugin which allows you to simulate acquistions by feeding images from a .tif file
into the Micro-Manager live window. To install these files, you simply download the latest .jar from the Releases page
of the respective projects and copy the files into the appropriate directories.

3.1.1 Micro-Manager 2

Before starting, you need the latest nightly build of Micro-Manager 2.0 (or higher).

1. Go to https://www.micro-manager.org/wiki/Version_2.0 and download the latest nightly build for your system.

2. Install Micro-Manager. Make note of the installation directory since you will need it later to install the .jar files.

3.1.2 ALICA

1. Navigate to https://github.com/MStefko/ALICA/releases and download ALICA.jar from the latest release.

2. Copy ALICA.jar to the MM2ROOT/mmplugins directory, where MM2ROOT refers to the installation directory
of Micro-Manager.

11

https://www.micro-manager.org/
https://github.com/MStefko/SASS
https://www.micro-manager.org/wiki/Version_2.0
https://github.com/MStefko/ALICA/releases


ALICA Documentation, Release 0.3.3

3.1.3 SASS

SASS is a Fiji plugin and is not intended to work with the same copy of ImageJ that is used by Micro-Manager. This
is because SASS has its own internal copy of ALICA that conflicts with Micro-Manager’s copy.

Do not install SASS in the same directory as Micro-Manager.

Instead, we will install SASS in a separate Fiji installation.

1. If you have not already done so, download a copy of Fiji from http://fiji.sc/ and unpack it. Make note of the
directory in which you installed it.

2. Navigate to https://github.com/MStefko/SASS/releases and download SASS_VERSION.jar from the latest re-
lease. VERSION will vary depending on the latest release.

3. Copy the SASS .jar file to FIJIROOT/plugins directory, where FIJIROOT is the installation directory of Fiji.
(Note that the folder this time is plugins, not mmplugins.)

3.1.4 Image Injector Plugin

1. Go to https://github.com/MStefko/ImageInjectorPlugin/releases and download the ImageInjector.jar file from
the latest release.

2. Copy the .jar file to the MM2ROOT/mmplugins directory.

3.2 Simulation Workflow

The workflow goes as follows:

1. Use SASS to simulate a time series image stack of a PALM or STORM experiment and save the stack as a .tif
file.

2. Use the Image Injector Plugin to feed the images in the stack into the Micro-Manager live window.

3. Run ALICA in virtual mode and observe how it responds to the simulated conditions in the image stack.

3.2.1 Step 1: Simulate a PALM/STORM Experiment with SASS

If you do not already have a .tif file of a time series image stack from a PALM/STORM experiment, you can simulate
one by following the steps in this section.

1. Launch Fiji.

2. Verify that the SASS plugin is recognized by Fiji and runs by clicking to Plugins > SASS > GUI in the ImageJ
menu bar.

12 Chapter 3. Photodynamics Simulations with ALICA and SASS

http://fiji.sc/
https://github.com/MStefko/SASS/releases
https://github.com/MStefko/ImageInjectorPlugin/releases


ALICA Documentation, Release 0.3.3

3. The GUI configuration window for the SASS simulation environment should appear. Select your parameters
for the simulation. A full description of the simulation parameters is outside the scope of this documentation.
However, you will want to set the Controller setting to Manual since we want only a simple simulation where
we manually select the laser power.

3.2. Simulation Workflow 13



ALICA Documentation, Release 0.3.3

4. Remember the value for the Max output parameter. This is the maximum output power of the simulated laser,
and you will need it in a later step.

5. Once everything is set, click the Initialize button to initialize the simulation.

6. Set the Set Point value to something smaller than the value of Max output. This value determines the output
power of the simulated laser.

7. When ready, start the simulation by clicking the Start button. This will begin to populate an image stack with
simulated STORM/PALM images.

8. You may stop the simulation and change the laser output power by clicking Stop in the STORMsim window and
adjusting the set point. Click Start to pick up where the simulation left off with the new laser power.

9. Once you have simulated a desired number of images in the stack, save the image stack by navigating to File >
Save As > Tiff. . . in the ImageJ menu bar.

From this point you have two options for further exploration. You can use SASS to directly test the different analyzers
and controllers. Or, you can continue further to directly test ALICA in a simulated Micro-Manager acquisition.

3.2.2 Step 2: Setup the Image Injector Plugin

Once you have a .tif stack, the next step is to setup the image injector to simulate a Micro-Manager acquisition.

14 Chapter 3. Photodynamics Simulations with ALICA and SASS



ALICA Documentation, Release 0.3.3

1. Launch Micro-Manager. Select the MM Demo configuration when prompted to select a hardware configuration.
(This Quickstart assumes that you are running Micro-Manager as an ImageJ plugin, which is the most common
behavior.)

2. Open the On-The-Fly Processor Pipeline window by navigating to Plugins > On-The-Fly Image Processing >
Configure Processors. . . in the Micro-Manager menu bar.

3. In the window that appears, verify whether an ImageInjector processor already exists in the pipeline. If not, add
one by clicking + Add. . . > ImageInjector.

4. Click the Configure. . . button for the ImageInjector processor.

5. In the dialog that appears, click the Choose file. . . button and select the .tif stack of images to inject.

6. We find that it helps to set the Frames per second value to something small during your initial tests, such as 5.

7. Click OK when you are finished configuring the processor. You may close the configuration window at this
point.

3.2. Simulation Workflow 15



ALICA Documentation, Release 0.3.3

8. Click the Live button in the Micro-Manager GUI window or in the Snap/Live View window if it’s already open.
You should now see the images from the .tif stack stream through the Snap/Live View window.

9. You can stop and restart the live stream at will. The stream will cycle back to the start of the image stack once
the end is reached.

3.2.3 Step 3: Launch ALICA in Virtual Mode

Now that Micro-Manager has been setup to stream pre-generated images through its Snap/Live View window, we can
launch ALICA and run it in virtual mode.

1. Navigate to Plugins > Device Control > ALICA in the Micro-Manager menu bar.

2. Select Live mode as the Image source and check the Virtual box under the options for the control device.

3. Click Start. This will open the monitor window which provides real-time reports about the ALICA’s operation,
such as fluorophore density estimates and the laser power.

4. Click the Live button in the main Micro-Manager GUI window. You should see the reports in ALICA’s Mon-
itor window respond to changes in the images streaming through the Snap/Live View window. If you don’t
immediately see any change in the monitors, try stopping and starting Live mode again in the Snap/Live View
window.

16 Chapter 3. Photodynamics Simulations with ALICA and SASS



ALICA Documentation, Release 0.3.3

5. When you want to close the Monitor window, click Stop in the Monitor window.

3.3 What’s Next?

Now that everything is setup, here are some further things that we recommend playing with to better understand how
ALICA works.

• Check the Live view checkbox in the SpotCounter analyzer settings for a live view of the identified spots.

• Change the Analyzer from SpotCounter to AutoLase or QuickPALM for ways to estimate fluorophore densities
in the images.

• Try ALICA’s virtual mode on actual experimental image stacks.

• Restrict the fluorophore density estimates to a subregion of the images by selecting a rectangular region in the
Snap/Live View and clicking the Set ROI button in the ALICA Monitor window. The best way to see how this
works is to use Spot Counter’s Live view setting. You can even drag the region around the field of view and
watch the changes reflected in the SpotCounter’s live view in real-time.

• Use SASS to directly test different Analyzer and Controller settings outside of ALICA.

3.3. What’s Next? 17



ALICA Documentation, Release 0.3.3

18 Chapter 3. Photodynamics Simulations with ALICA and SASS



CHAPTER 4

Extending ALICA

This page describes how you can develop your own ALICA Analyzer or Controller to suit your needs.

This page will guide you through the process of creating your own Analyzer, but applies as well to creating a Controller.

General knowledge of Java programming is assumed and recommended.

Required JDK version: 1.6.0_31 (Same as MicroManager’s)

4.1 Implementing a custom Analyzer

4.1.1 Step 1: Importing the Analyzer interface

First, download the ALICA_dev.jar file from the relevant release, and include it as a resource of your project
(in NetBeans, add it to Project Properties -> Libraries -> Compile-time Libraries using the
Add JAR/Folder button). This jar file contains all ALICA libraries, as well as necessary MicroManager and
ImageJ libraries.

In the same pane, you have to ensure that your JDK version is 1.6 (same as MicroManager’s).

19

https://github.com/MStefko/ALICA/releases


ALICA Documentation, Release 0.3.3

4.1.2 Step 2: Implementing the Analyzer and its Setup/Status panels

Implement the Analyzer interface from package ch.epfl.leb.alica, and extend the
AnalyzerSetupPanel and (optionally) AnalyzerStatusPanel abstract classes from package ch.
epfl.leb.alica.analyzers. Check the API documentation for details. You can also consult the source code
for already implemented Analyzers on GitHub.

20 Chapter 4. Extending ALICA

_javasphinx/packages.html
https://github.com/MStefko/ALICA/tree/master/src/ch/epfl/leb/alica/analyzers


ALICA Documentation, Release 0.3.3

To give a little bit of intuition, the AnalyzerSetupPanel serves as a Builder for Analyzers. In the Panel, the user
can modify initial settings of the Analyzer. When ALICA Start button is clicked, the initAnalyzer() method
is triggered, which builds the Analyzer. This Analyzer can provide a AnalyzerStatusPanel, which (if provided)
is embedded in the ALICA monitor GUI, and allows further interaction with the Analyzer.

In NetBeans, it is easier to first create a Swing JPanel form, implement user input fields, and then finally change
the implements javax.swing.JPanel declaration to extends ch.epfl.leb.alica.analyzers.
AnalyzerSetupPanel, and implement the required methods (similarly for StatusPanel).

4.1. Implementing a custom Analyzer 21



ALICA Documentation, Release 0.3.3

4.1.3 Step 3: Compiling the created Analyzer

Once all required functionality is implemented, compile the project into a .jar file. Remember, that the jar filename
must start with ALICA_, e.g. ALICA_MyOwnAnalyzer.jar. Place this jar file into the mmplugins/ folder of
MicroManager.

22 Chapter 4. Extending ALICA



ALICA Documentation, Release 0.3.3

When you launch ALICA, all added Analyzers and Controllers should be accessible via their respective dropdown
menus.

4.1. Implementing a custom Analyzer 23



ALICA Documentation, Release 0.3.3

24 Chapter 4. Extending ALICA



CHAPTER 5

Frequently Asked Questions

5.1 General

5.1.1 Doesn’t AutoLase already do autonomous illumination control for
STORM/PALM?

AutoLase was developed for one particular use-case: automated PALM imaging of relatively sparse bacteria popula-
tions on microscopes with small fields of view. In more general conditions, AutoLase can completely fail to maintain
an optimum illumination for STORM/PALM imaging because it cannot easily distinguish between true fluorescence
signals and those from other sources such as fiducial markers, dust, or sample autofluorescence. Recent advances that
extend PALM/STORM to large fields of view1 further compound these problems because the chances of capturing
a signal from a foreign source are greatly increased. Simply put, AutoLase cannot adequately account for sample
heterogeneity.

Recognizing that every sample has different illumination requirements and varying degrees of noise, we developed
ALICA as an extensible, robust, and general-purpose tool for autonomous illumination control in PALM/STORM
experiments.

5.1.2 How do I do determine the value for the set point?

The set point is the value from the analyzer that the controller tries to maintain. Because of this, the meaning of the
set point will vary depending on the analyzer you choose. For example, the set point for the spot counter is in units of
number of spots per 100𝜇𝑚× 100𝜇𝑚.

A pretty good way to empirically find the set point for any analyzer is to perform a STORM or PALM experiment
and manually adjust the laser powers until your sample is blinking optimally. Then, use the real-time plot in the upper

1 K. M. Douglass et al., “Super-resolution imaging of multiple cells by optimized flat-field epi-illumination,” Nature Photonics 10, 705-708
(2016). http://www.nature.com/nphoton/journal/v10/n11/full/nphoton.2016.200.html ; Z. Zhao et al., “High-power homogeneous illumination for
super-resolution localization microscopy with large field-of-view,” Optics Express 25, 13382-13395 (2017). https://www.osapublishing.org/oe/
abstract.cfm?uri=oe-25-12-13382 ; R. Diekmann, et al., “Chip-based wide field-of-view nanoscopy,” Nature Photonics 11, 322-328 (2017). https:
//www.nature.com/nphoton/journal/v11/n5/abs/nphoton.2017.55.html

25

https://micro-manager.org/wiki/AutoLase
http://www.nature.com/nphoton/journal/v10/n11/full/nphoton.2016.200.html
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-12-13382
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-12-13382
https://www.nature.com/nphoton/journal/v11/n5/abs/nphoton.2017.55.html
https://www.nature.com/nphoton/journal/v11/n5/abs/nphoton.2017.55.html


ALICA Documentation, Release 0.3.3

right of the ALICA Monitor window and take the y-value of the curve as the approximate value for the set point. This
value is highlighted in the figure below:

5.2 Software-specific

5.2.1 What version of Micro-Manager should I use?

ALICA was designed to work with Micro-Manager 2.0 or greater. See the Micro-Manager 2.0 website for more
information.

5.2.2 Why doesn’t ALICA work properly when SASS is installed?

SASS is a Fiji plugin providing a simulation environment that is used to develop and test ALICA. Because of this,
the SASS .jar file contains a completely independent copy of ALICA which competes with Micro-Manager’s copy,
producing unexpected behavior.

For this reason, we highly recommend installing SASS with an installation of Fiji that is independent of the copy of
ImageJ used by Micro-Manager and ALICA.

26 Chapter 5. Frequently Asked Questions

https://www.micro-manager.org/wiki/Version_2.0


CHAPTER 6

Javadoc

6.1 ch.epfl.leb.alica

6.1.1 AlicaCore

public final class AlicaCore
The core’s settings are controlled by MainGUI, and the Core then produces products from its factories, and
initializes the Coordinator, and later terminates it.

Author stefko

Methods

getAnalyzerFactory

public AnalyzerFactory getAnalyzerFactory()

Returns AnalyzerFactory

getControllerFactory

public ControllerFactory getControllerFactory()

Returns ControllerFactory

getInstance

public static AlicaCore getInstance()
Returns the singleton instance, or an exception if it was not yet initialized

Returns the singleton instance of the core

27



ALICA Documentation, Release 0.3.3

getLaserFactory

public LaserFactory getLaserFactory()

Returns LaserFactory

initialize

public static AlicaCore initialize(Studio studio)
Initialize the Singleton core

Parameters

• studio – MicroManager studio

Throws

• AlreadyInitializedException – if it was already initialized

Returns the singleton instance of the core

isCoordinatorRunning

public boolean isCoordinatorRunning()
Checks if the stop flag of the coordinator was set.

Returns true if coordinator’s stop flag was set, or if coordinator is null

printLoadedDevices

public void printLoadedDevices()
Print all loaded devices in the MMCore to the log.

setControlWorkerTickRate

public void setControlWorkerTickRate(int controller_tick_rate_ms)
Sets the tick rate for the controller.

Parameters

• controller_tick_rate_ms – delay between two runs of the ControlTask

setCurrentROI

public boolean setCurrentROI()
Sets currently selected ROI to the analyzer when it is initialized

Returns true if ROI is set, false if no ROI is set

28 Chapter 6. Javadoc



ALICA Documentation, Release 0.3.3

setLaserPowerDeadzone

public void setLaserPowerDeadzone(double laser_power_deadzone)
Sets the deadzone of change of laser power output. For example, if set to 0.1, the laser would ignore requests
for change of power that would be different by less than 10% from current output power.

Parameters

• laser_power_deadzone – deadzone size (NOT in percent)

setLaserVirtual

public void setLaserVirtual(boolean is_laser_virtual)
Inform factories that the laser should only display its output, not really communicate with the hardware.

Parameters

• is_laser_virtual – true if virtual, false if real

setMaxLaserPower

public void setMaxLaserPower(double max_laser_power)
Inform factories of maximal laser power value.

Parameters

• max_laser_power – maximal laser power value

startWorkers

public void startWorkers(ImagingMode imaging_mode)
Builds products from their factories using current settings, and starts the Coordinator (analysis is started)

Parameters

• imaging_mode –

stopWorkers

public void stopWorkers()
Requests the coordinator to stop and then waits for it to join.

6.1.2 AlicaCore.AlreadyInitializedException

public static class AlreadyInitializedException extends RuntimeException
Thrown if a double initialization is requested

Constructors

AlreadyInitializedException

public AlreadyInitializedException(String message)

6.1. ch.epfl.leb.alica 29

http://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html


ALICA Documentation, Release 0.3.3

Parameters

• message – exception message

6.1.3 AlicaLogger

public class AlicaLogger
The ALICA logger logs analyzer and controller outputs during an acquisition.

Author Marcel Stefko

Methods

addBatchedOutput

public void addBatchedOutput(int frame_no, double value)
Add batched output of analyzer into the log.

Parameters

• frame_no –

• value – value of the output

addControllerOutput

public void addControllerOutput(int frame_no, double value)
Add output of controller into log

Parameters

• frame_no –

• value – value of the output

addIntermittentOutput

public void addIntermittentOutput(int frame_no, double value)
Add intermittent output of analyzer into log

Parameters

• frame_no –

• value – value of the output

addSetpoint

public void addSetpoint(int frame_no, double setpoint)
Add setpoint of controller into log

Parameters

• frame_no –

• setpoint – value of the output

30 Chapter 6. Javadoc



ALICA Documentation, Release 0.3.3

addToLog

public void addToLog(int frame_no, String value_name, double value)
Add a parameter into the log.

Parameters

• frame_no – The acquisition frame number for this log entry.

• value_name – name of parameter

• value – value of parameter

addToLog

public void addToLog(int frame_no, String value_name, String value)
Add a parameter into log

Parameters

• frame_no –

• value_name – name of parameter

• value – value of parameter

clear

public final void clear()
Resets logger, removes all data.

getInstance

public static AlicaLogger getInstance()

Returns AlicaLogger singleton

getLogMap

public LinkedHashMap<Integer, LinkedHashMap<String, Object>> getLogMap()
Returns the current log.

Returns The current log stored by this logger.

logDebugMessage

public void logDebugMessage(String message)
Log message to MicroManager or to a general logger

Parameters

• message – message to be logged

6.1. ch.epfl.leb.alica 31

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html


ALICA Documentation, Release 0.3.3

logError

public void logError(Exception exc, String message)
Log exception in MicroManager or in general logger

Parameters

• exc – exception to be logged

• message – message to be logged

logMessage

public void logMessage(String message)
Log message to MicroManager or to a general logger.

Parameters

• message – The message to be logged.

saveLog

public boolean saveLog()
Saves the log into a csv file chosen by file selection dialog.

Returns true if save was successful, false otherwise

setStudio

public void setStudio(Studio studio)
Set studio to allow general logging.

Parameters

• studio – MMStudio

showError

public void showError(Exception exc, String message)
Show exception in MicroManager or in ImageJ

Parameters

• exc – exception to be shown

• message – message to be shown

showMessage

public void showMessage(String message)
Show message in MicroManager or in ImageJ

Parameters

• message – message to be logged

32 Chapter 6. Javadoc

http://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html


ALICA Documentation, Release 0.3.3

6.1.4 AlicaLoggerTest

public class AlicaLoggerTest
Unit tests for the ALICA logger class.

Author Kyle M. Douglass

Methods

setUp

public void setUp()

testAddToLogNoOverwrite

public void testAddToLogNoOverwrite()
Test of addToLog method, of class AlicaLogger.

testAddToLog_3args_1

public void testAddToLog_3args_1()
Test of addToLog method, of class AlicaLogger.

testAddToLog_3args_2

public void testAddToLog_3args_2()
Test of addToLog method, of class AlicaLogger.

6.1.5 AlicaPlugin

public class AlicaPlugin implements MenuPlugin, SciJavaPlugin
MicroManager2.0 MenuPlugin for automated laser illumination intensity control.

Author Marcel Stefko

Methods

getCopyright

public String getCopyright()

Returns plugin copyright

getCore

public AlicaCore getCore()

Returns singleton core of ALICA plugin

6.1. ch.epfl.leb.alica 33

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html


ALICA Documentation, Release 0.3.3

getHelpText

public String getHelpText()

getName

public String getName()

Returns name of the plugin

getSubMenu

public String getSubMenu()

Returns Sub-menu location of the plugin

getVersion

public String getVersion()

Returns current plugin version

onPluginSelected

public void onPluginSelected()
Display the MainGUI singleton if it was hidden, if it doesn’t exist, initialize it. AlicaCore must be initialized
before calling this method.

setContext

public void setContext(Studio studio)
Initialize the AlicaCore, if it already exists, do nothing.

Parameters

• studio – MMStudio

6.1.6 ImagingMode

public enum ImagingMode
Possible ways for the plugin to grab images from micromanager.

Author Marcel Stefko

Enum Constants

GRAB_FROM_CORE

public static final ImagingMode GRAB_FROM_CORE
Query directly the MMCore getLastImage() method.

34 Chapter 6. Javadoc

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html


ALICA Documentation, Release 0.3.3

LIVE

public static final ImagingMode LIVE
Get images from the Datastore associated with live() mode.

NEXT_ACQUISITION

public static final ImagingMode NEXT_ACQUISITION
Get images from the Datastore which is associated with the next acquisition that will be started.

6.1.7 Laser

public interface Laser
Laser recieves input from the controller and adjusts the laser power accordingly.

Author Marcel Stefko

Methods

getDeviceName

public String getDeviceName()

Returns unique device name (assigned by MicroManager)

getLaserPower

public double getLaserPower()
Asks the hardware for current actual value of laser power

Throws

• Exception – if error occurred during communication with hardware

Returns actual laser power value

getLaserPowerCached

public double getLaserPowerCached()
Returns cached value of laser power, without querying the hardware for actual value.

Returns cached laser power value

getMaxPower

public double getMaxPower()

Returns maximal allowed value of laser power

6.1. ch.epfl.leb.alica 35

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html


ALICA Documentation, Release 0.3.3

getMinPower

public double getMinPower()

Returns minimal allowed value of laser power

getPropertyName

public String getPropertyName()

Returns unique device property name (assigned by MicroManager)

setLaserPower

public double setLaserPower(double desired_power)
Set the laser power to desired value

Parameters

• desired_power – desired laser power value

Throws

• Exception – if error occurred during communication with hardware

Returns actual laser power value

6.1.8 MainGUI

public final class MainGUI extends JFrame
Main controlling GUI for the ALICA plugin. This is a singleton which is shown every time the plugin is invoked
from MM menu.

Author Marcel Stefko

Methods

getInstance

public static MainGUI getInstance()

Returns the GUI singleton instance

initialize

public static MainGUI initialize(AlicaCore core)
Singleton initializer

Parameters

• core – AlicaCore singleton

Returns the GUI instance

36 Chapter 6. Javadoc

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JFrame.html


ALICA Documentation, Release 0.3.3

6.1.9 MainGUI.AlreadyInitializedException

public static class AlreadyInitializedException extends RuntimeException
Thrown if the GUI singleton is attempted to be initialized for a second time.

Constructors

AlreadyInitializedException

public AlreadyInitializedException(String message)

Parameters

• message – message of the exception.

6.2 ch.epfl.leb.alica.lasers

6.2.1 LaserFactory

public final class LaserFactory
LaserFactory

Author Marcel Stefko

Constructors

LaserFactory

public LaserFactory(Studio studio)
Initialize the factory with the MM studio

Parameters

• studio –

Methods

build

public Laser build()
Build the laser using the current state

Returns initialized Laser

getPossibleLasers

public StrVector getPossibleLasers()
Query the MMCore for list of loaded devices

Returns StrVector list of loaded devices in the core

6.2. ch.epfl.leb.alica.lasers 37

http://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html


ALICA Documentation, Release 0.3.3

getSelectedDeviceName

public String getSelectedDeviceName()

Returns currently selected device identifier

getSelectedDeviceProperties

public StrVector getSelectedDeviceProperties()
Query the MMCore for properties of the selected device

Throws

• Exception – if hardware communication fails

Returns StrVector list of properties

selectDevice

public void selectDevice(String name)
Select a device

Parameters

• name – unique device identifier from the MMCore

selectProperty

public void selectProperty(String property)
Select a property of the currently selected device

Parameters

• property – unique property identifier from MMCore

setLaserPowerDeadzone

public void setLaserPowerDeadzone(double laser_power_deadzone)
Sets the deadzone of change of laser power output. For example, if set to 0.1, the laser would ignore requests
for change of power that would be different by less than 10% from current output power.

Parameters

• laser_power_deadzone – deadzone size (NOT in percent)

setLaserVirtual

public void setLaserVirtual(boolean is_laser_virtual)
If true, create a VirtualLaser, otherwise a MMLaser

Parameters

• is_laser_virtual –

38 Chapter 6. Javadoc

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html


ALICA Documentation, Release 0.3.3

setMaxLaserPower

public void setMaxLaserPower(double max_laser_power)
Sets upper boundary for laser output, higher inputs from controller will be constrained.

Parameters

• max_laser_power –

6.2.2 MMLaser

public class MMLaser implements Laser
A MicroManager laser implementation

Author Marcel Stefko

Constructors

MMLaser

public MMLaser(Studio studio, String device_name, String property_name, double min_power, double
max_power, double laser_power_deadzone)

Initialize the MicroManager laser

Parameters

• studio – MMStudio

• device_name – MM identifier of the device

• property_name – MM identifier of the property to be controlled

• min_power – minimal allowed property value

• max_power – maximal allowed property value

• laser_power_deadzone – deadzone of laser power change requests

Methods

getDeviceName

public String getDeviceName()

getLaserPower

public double getLaserPower()

getLaserPowerCached

public double getLaserPowerCached()

6.2. ch.epfl.leb.alica.lasers 39

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html


ALICA Documentation, Release 0.3.3

getMaxPower

public double getMaxPower()

getMinPower

public double getMinPower()

getPropertyName

public String getPropertyName()

setLaserPower

public double setLaserPower(double desired_power)

6.2.3 VirtualLaser

public class VirtualLaser implements Laser
A virtual laser which does not actually output the values to the laser, only to the GUI and the debug MM log.

Author Marcel Stefko

Constructors

VirtualLaser

public VirtualLaser(Studio studio, String device_name, String property_name, double min_power, double
max_power)

Initialize the virtual laser

Parameters

• studio – MMStudio

• device_name – MM identifier of the device

• property_name – MM identifier of the property to be controlled

• min_power – minimal allowed property value

• max_power – maximal allowed property value

Methods

getDeviceName

public String getDeviceName()

40 Chapter 6. Javadoc

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html


ALICA Documentation, Release 0.3.3

getLaserPower

public double getLaserPower()

getLaserPowerCached

public double getLaserPowerCached()

getMaxPower

public double getMaxPower()

getMinPower

public double getMinPower()

getPropertyName

public String getPropertyName()

setLaserPower

public double setLaserPower(double desired_power)

6.3 ch.epfl.leb.alica.workers

6.3.1 AnalysisWorker

public class AnalysisWorker extends Thread
This thread continuously queries either the MMCore, or the processing pipeline of the live mode for new images,
and calls the analyzer’s processImage() method on them as fast as it can. Always the latest image is taken for
analysis, so it is possible for images to be skipped. It also gathers some statistics for display by the GUI.

Author Marcel Stefko

Constructors

AnalysisWorker

public AnalysisWorker(Coordinator coordinator, Studio studio, Analyzer analyzer, ImagingMode imag-
ing_mode)

Initialize the worker.

Parameters

• coordinator – parent Coordinator

• studio – for logging and image queries

6.3. ch.epfl.leb.alica.workers 41

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html


ALICA Documentation, Release 0.3.3

• analyzer – this Analyzer’s processImage() method is called on gathered images

• imaging_mode –

Methods

acquisitionEnded

public void acquisitionEnded(AcquisitionEndedEvent evt)
If the imaging mode is NEXT_ACQUISITION, the coordinator will asked to stop.

Parameters

• evt – acquisition stopped

acquisitionStarted

public void acquisitionStarted(AcquisitionStartedEvent evt)
If the imaging mode is NEXT_ACQUISITION, the NewImageWatcher will be informed.

Parameters

• evt – new acquisition started event

getAnalyzerShortDescription

public String getAnalyzerShortDescription()
Returns the current description of the analyzer’s output.

Returns A string describing the analyzer’s current output.

getCurrentFPS

public int getCurrentFPS()

Returns number of analyzed frames in the last second

getCurrentImageCount

public int getCurrentImageCount()

Returns number of analyzed frames since last counter reset, which could be either caused by live
mode start, or acquisition start.

getLastAnalysisTime

public long getLastAnalysisTime()

Returns duration of last analysis in milliseconds

42 Chapter 6. Javadoc

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html


ALICA Documentation, Release 0.3.3

getNewImageFromCoreAndAnalyze

public void getNewImageFromCoreAndAnalyze()
Acquire the new image directly from MMCore and send for analysis.

Throws

• java.lang.InterruptedException – if waiting is interrupted

getNewImageFromWatcherAndAnalyze

public void getNewImageFromWatcherAndAnalyze()
Grabs new images from the Datastore associated with the NewImageWatcher, analyzes it.

Throws

• java.lang.InterruptedException –

liveModeStarted

public void liveModeStarted(LiveModeEvent evt)
Called by the MMCore to signalize there is a new live mode. If the imaging mode is LIVE, the NewImage-
Watcher will be informed.

Parameters

• evt – new live mode event

queryAnalyzerForBatchOutput

public double queryAnalyzerForBatchOutput()
Analyzer’s internal state might change, and the output is passed on to the controller.

Returns batched output of analyzer

queryAnalyzerForIntermittentOutput

public double queryAnalyzerForIntermittentOutput()
Used for GUI rendering.

Returns intermittent output of the analyzer

requestStop

public void requestStop()
Stops the analyzer after finalizing the current analysis.

run

public void run()

6.3. ch.epfl.leb.alica.workers 43

http://docs.oracle.com/javase/8/docs/api/java/lang/InterruptedException.html
http://docs.oracle.com/javase/8/docs/api/java/lang/InterruptedException.html


ALICA Documentation, Release 0.3.3

setLastImageCoords

void setLastImageCoords(Coords coords)
Called by the NewImageWatcher to update last coords

Parameters

• coords – new Coords

setROI

public void setROI(Roi roi)
Set the ROI for Analyzer

Parameters

• roi – ROI to be set

6.3.2 ControlTask

class ControlTask extends TimerTask
This TimerTask is run periodically by the ControlWorker

Author Marcel Stefko

Constructors

ControlTask

public ControlTask(AnalysisWorker analysis_worker, Controller controller, Laser laser)
Initialize the ControlTask

Parameters

• analysis_worker – AnalysisWorker which will be queried for output

• controller – Controller to which output of AnalysisWorker is fed

• laser – Laser to which output of Controller is fed

Methods

getLastControllerOutput

public double getLastControllerOutput()

Returns last controller output

run

public void run()

44 Chapter 6. Javadoc

http://docs.oracle.com/javase/8/docs/api/java/util/TimerTask.html


ALICA Documentation, Release 0.3.3

6.3.3 ControlWorker

public class ControlWorker extends Timer
A Timer which schedules a task that regularly queries the AnalysisWorker for batched output, and passes it on
to the controller, then gets the controller’s output and passes it on to the laser.

Author Marcel Stefko

Constructors

ControlWorker

public ControlWorker(AnalysisWorker analysis_worker, Controller controller, Laser laser)
Initialize the ControlWorker

Parameters

• analysis_worker – AnalysisWorker which will be queried for output

• controller – Controller to which output of AnalysisWorker is fed

• laser – Laser to which output of Controller is fed

Methods

getLastControllerOutput

public double getLastControllerOutput()

Returns last controller output

scheduleExecution

public void scheduleExecution(long delay_ms, long period_ms)
The task of this worker will be executed regularly.

Parameters

• delay_ms – initial delay

• period_ms – period of the task

6.3.4 Coordinator

public class Coordinator
Coordinates workhorses of the analysis.

Author Marcel Stefko

6.3. ch.epfl.leb.alica.workers 45

http://docs.oracle.com/javase/8/docs/api/java/util/Timer.html


ALICA Documentation, Release 0.3.3

Constructors

Coordinator

public Coordinator(Studio studio, Analyzer analyzer, Controller controller, Laser laser, ImagingMode
imaging_mode, int controller_tick_rate_ms, Roi ROI, boolean headless)

Initialize the coordinator

Parameters

• studio – MM studio

• analyzer –

• controller –

• laser –

• imaging_mode –

• controller_tick_rate_ms –

• ROI – roi for analyzer

Methods

dispose

public void dispose()
Clear windows opened by analyzers and controllers.

getAnalyzerStatusPanel

public AnalyzerStatusPanel getAnalyzerStatusPanel()

Returns status panel of associated analyzer

getControllerStatusPanel

public ControllerStatusPanel getControllerStatusPanel()

Returns status panel of associated controller

getTimeMillis

public final long getTimeMillis()
Returns time in milliseconds since the worker was initialized

Returns elapsed time in milliseconds

46 Chapter 6. Javadoc



ALICA Documentation, Release 0.3.3

isRunning

public boolean isRunning()
True if still running, false if stopped

Returns boolean

requestStop

public void requestStop()
Request the threads to stop.

setCurrentROI

public boolean setCurrentROI()
Get the currently selected ROI in active MM display, and set it as analysis ROI.

Returns true if ROI has been set, false if no ROI is set

setSetpoint

public void setSetpoint(double value)
Set the controller setpoint to value

Parameters

• value – new value of controller setpoint

6.3.5 Grapher

class Grapher
Wrapped around GraphData for easier processing

Author Marcel Stefko

Constructors

Grapher

public Grapher(int n_points)
Initialize a grapher with set length of point plotting

Parameters

• n_points – no. of points to be plotted

6.3. ch.epfl.leb.alica.workers 47



ALICA Documentation, Release 0.3.3

Methods

addDataPoint

public void addDataPoint(double value)
Add the next point to the grapher

Parameters

• value – value to be added

getGraphData

public GraphData getGraphData()
Return GraphData which can then be plotted

Returns GraphData

6.3.6 MonitorGUI

public class MonitorGUI extends javax.swing.JFrame
Display for monitoring the current Coordinator state. This display is controlled by the Coordinator.

Author Marcel Stefko

Fields

l_fps

public javax.swing.JLabel l_fps

l_laser_power_max

public javax.swing.JLabel l_laser_power_max

l_last_analysis_duration

public javax.swing.JLabel l_last_analysis_duration

p_realtime_plot_parent

public javax.swing.JPanel p_realtime_plot_parent

pb_laser_power

public javax.swing.JProgressBar pb_laser_power

48 Chapter 6. Javadoc

http://docs.oracle.com/javase/8/docs/api/javax/swing/package-summary.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JFrame.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/package-summary.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JLabel.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/package-summary.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JLabel.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/package-summary.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JLabel.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/package-summary.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JPanel.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/package-summary.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JProgressBar.html


ALICA Documentation, Release 0.3.3

Constructors

MonitorGUI

public MonitorGUI(Coordinator coordinator, String analyzer_name, String controller_name, String
laser_name, String analyzer_description, double start_setpoint)

Creates new form MonitorGUI

Parameters

• coordinator – Coordinator parent

• analyzer_name – name of the used analyzer

• controller_name – name of the used controller

• laser_name – name of the used laser

• analyzer_description – A short description of the analyzer’s units.

• start_setpoint – setpoint value to display at startup

Methods

setLaserPowerDisplayMax

public void setLaserPowerDisplayMax(double value)
Adjust the displayed laser power maximal value and store it for progressbar calculations.

Parameters

• value – max laser power value

setRoiStatus

public void setRoiStatus(boolean is_set)
Update the GUI display of ROI status

Parameters

• is_set – true if ROI is set

setStopped

public void setStopped()
Displays the STOPPED message in GUI.

updateAnalyzerDescription

public void updateAnalyzerDescription(String description)
Update analyzer description.

Parameters

• description – A short description of the analyzer’s outputs.

6.3. ch.epfl.leb.alica.workers 49

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html


ALICA Documentation, Release 0.3.3

updateFPS

public void updateFPS(int value)
Update displayed FPS to new value

Parameters

• value – new value of FPS

updateLaserPowerDisplay

public void updateLaserPowerDisplay(double value)
Update displayed laser power to new value

Parameters

• value – new value of laser power

updateLastAnalysisDuration

public void updateLastAnalysisDuration(int duration_ms)
Update last analysis duration to new value

Parameters

• duration_ms – last analysis duration in ms

updatePlot

public void updatePlot(GraphData data)
Update the plow with new data

Parameters

• data – data to be plotted

6.3.7 MonitorTask

class MonitorTask extends TimerTask
This TimerTask updates GUI with recent information from other workers

Author Marcel Stefko

Constructors

MonitorTask

public MonitorTask(MonitorGUI gui, AnalysisWorker analysis_worker, ControlWorker control_worker)
Initialize new task with relevant members

Parameters

• gui – MonitorGUI to be updated

• analysis_worker –

50 Chapter 6. Javadoc

http://docs.oracle.com/javase/8/docs/api/java/util/TimerTask.html


ALICA Documentation, Release 0.3.3

• control_worker –

Methods

run

public void run()

6.3.8 MonitorWorker

public class MonitorWorker extends Timer
Updates GUI with recent information from other workers

Author Marcel Stefko

Constructors

MonitorWorker

public MonitorWorker(MonitorGUI gui, AnalysisWorker analysis_worker, ControlWorker con-
trol_worker)

Initialize new worker for monitoring

Parameters

• gui – MonitorGUI to be updated

• analysis_worker –

• control_worker –

Methods

cancel

public void cancel()

scheduleExecution

public void scheduleExecution(long delay_ms, long period_ms)
The task of this worker will be executed regularly.

Parameters

• delay_ms – initial delay

• period_ms – period of the task

6.3. ch.epfl.leb.alica.workers 51

http://docs.oracle.com/javase/8/docs/api/java/util/Timer.html


ALICA Documentation, Release 0.3.3

6.3.9 NewImageWatcher

class NewImageWatcher
The watcher is subscribed to a Datastore by the AnalysisWorker, and then it informs the AnalysisWorker of any
new images in the Datastore.

Author Marcel Stefko

Constructors

NewImageWatcher

public NewImageWatcher(Object object_to_lock, AnalysisWorker thread_to_notify)

Methods

getLatestDatastore

public Datastore getLatestDatastore()

newImageAcquired

public void newImageAcquired(DataProviderHasNewImageEvent evt)
Notify the thread that new image is available and send it the coords.

Parameters

• evt – event containing coords

setLatestDatastore

public void setLatestDatastore(Datastore store)
Sets the latest datastore, and registers for its events.

Parameters

• store –

52 Chapter 6. Javadoc

http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html


CHAPTER 7

About

53



ALICA Documentation, Release 0.3.3

ALICA is an open-source Micro-Manager plugin for real-time control of single molecule photodynamics using adap-
tive illumination. In particular, ALICA enables autonomous super-resolution fluorescence imaging using tech-
niques such as STORM and PALM123.

ALICA works by analyzing the incoming images during an acquisition to produce an estimate of the number of fluo-
rescence emitting molecules in a region of interest. The estimates are then fed into a control system that automatically
adjusts the illumination intensity to maintain the optimum density of emitting molecules for the desired application.
Example applications include

• STORM and PALM super-resolution fluorescence microscopy

• in vitro single molecule assays

• single particle tracking

A primary design goal of ALICA is extensibility. A minimal knowledge of the Java programming language will
allow you to write your own analyzers for deriving quantitative information from an image stream and controllers for
implementing closed-loop feedback for your hardware. As a Micro-Manager plugin, ALICA easily integrates with
many types of cameras and illumination sources.

ALICA was designed and written by Marcel Stefko and Kyle M. Douglass in the Laboratory of Experimental Bio-
physics at the EPFL to automate the lab’s STORM and PALM microscopes.

For more information, please see the FAQ or Javadoc

1 M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)”, Nature
Methods 3, 793-796 (2006). http://www.nature.com/nmeth/journal/v3/n10/abs/nmeth929.html

2 E. Betzig, et al., “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642-1645 (2006). http://science.
sciencemag.org/content/313/5793/1642

3 S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,”
Biophysical Journal 91, 4258-4272 (2006). http://www.sciencedirect.com/science/article/pii/S0006349506721403

54 Chapter 7. About

https://www.micro-manager.org/
extending.html
https://www.micro-manager.org/
https://leb.epfl.ch
https://leb.epfl.ch
faq.html
_javasphinx/packages.html
http://www.nature.com/nmeth/journal/v3/n10/abs/nmeth929.html
http://science.sciencemag.org/content/313/5793/1642
http://science.sciencemag.org/content/313/5793/1642
http://www.sciencedirect.com/science/article/pii/S0006349506721403


CHAPTER 8

Acknowledgments

8.1 Thanks

• The Laboratory of Experimental Biophysics and Suliana Manley

• The École Polytechnique Fédérale de Lausanne

• Micro-Manager and the Micro-Manager community

• AutoLase by Seamus Holden and Thomas Pengo

• QuickPALM by Ricardo Henriques, et al.

• SpotCounter by Nico Stuurman

8.2 Authors

• Marcel Stefko

• Kyle M. Douglass

55

https://leb.epfl.ch
http://epfl.ch/
https://www.micro-manager.org/
https://micro-manager.org/wiki/AutoLase
http://imagej.net/QuickPALM
http://imagej.net/SpotCounter
https://github.com/MStefko
https://github.com/kmdouglass


ALICA Documentation, Release 0.3.3

56 Chapter 8. Acknowledgments



CHAPTER 9

See Also

• SASS - STORM Acquisition Simulation Software

57

http://sass.readthedocs.io/en/latest/


ALICA Documentation, Release 0.3.3

58 Chapter 9. See Also



Index

A
acquisitionEnded(AcquisitionEndedEvent) (Java

method), 42
acquisitionStarted(AcquisitionStartedEvent) (Java

method), 42
addBatchedOutput(int, double) (Java method), 30
addControllerOutput(int, double) (Java method), 30
addDataPoint(double) (Java method), 48
addIntermittentOutput(int, double) (Java method), 30
addSetpoint(int, double) (Java method), 30
addToLog(int, String, double) (Java method), 31
addToLog(int, String, String) (Java method), 31
AlicaCore (Java class), 27
AlicaLogger (Java class), 30
AlicaLoggerTest (Java class), 33
AlicaPlugin (Java class), 33
AlreadyInitializedException (Java class), 29, 37
AlreadyInitializedException(String) (Java constructor),

29, 37
AnalysisWorker (Java class), 41
AnalysisWorker(Coordinator, Studio, Analyzer, Imaging-

Mode) (Java constructor), 41

B
build() (Java method), 37

C
cancel() (Java method), 51
ch.epfl.leb.alica (package), 27
ch.epfl.leb.alica.lasers (package), 37
ch.epfl.leb.alica.workers (package), 41
clear() (Java method), 31
ControlTask (Java class), 44
ControlTask(AnalysisWorker, Controller, Laser) (Java

constructor), 44
ControlWorker (Java class), 45
ControlWorker(AnalysisWorker, Controller, Laser) (Java

constructor), 45
Coordinator (Java class), 45

Coordinator(Studio, Analyzer, Controller, Laser, Imag-
ingMode, int, Roi, boolean) (Java constructor),
46

D
dispose() (Java method), 46

G
getAnalyzerFactory() (Java method), 27
getAnalyzerShortDescription() (Java method), 42
getAnalyzerStatusPanel() (Java method), 46
getControllerFactory() (Java method), 27
getControllerStatusPanel() (Java method), 46
getCopyright() (Java method), 33
getCore() (Java method), 33
getCurrentFPS() (Java method), 42
getCurrentImageCount() (Java method), 42
getDeviceName() (Java method), 35, 39, 40
getGraphData() (Java method), 48
getHelpText() (Java method), 34
getInstance() (Java method), 27, 31, 36
getLaserFactory() (Java method), 28
getLaserPower() (Java method), 35, 39, 41
getLaserPowerCached() (Java method), 35, 39, 41
getLastAnalysisTime() (Java method), 42
getLastControllerOutput() (Java method), 44, 45
getLatestDatastore() (Java method), 52
getLogMap() (Java method), 31
getMaxPower() (Java method), 35, 40, 41
getMinPower() (Java method), 36, 40, 41
getName() (Java method), 34
getNewImageFromCoreAndAnalyze() (Java method), 43
getNewImageFromWatcherAndAnalyze() (Java method),

43
getPossibleLasers() (Java method), 37
getPropertyName() (Java method), 36, 40, 41
getSelectedDeviceName() (Java method), 38
getSelectedDeviceProperties() (Java method), 38
getSubMenu() (Java method), 34
getTimeMillis() (Java method), 46

59



ALICA Documentation, Release 0.3.3

getVersion() (Java method), 34
GRAB_FROM_CORE (Java field), 34
Grapher (Java class), 47
Grapher(int) (Java constructor), 47

I
ImagingMode (Java enum), 34
initialize(AlicaCore) (Java method), 36
initialize(Studio) (Java method), 28
isCoordinatorRunning() (Java method), 28
isRunning() (Java method), 47

L
l_fps (Java field), 48
l_laser_power_max (Java field), 48
l_last_analysis_duration (Java field), 48
Laser (Java interface), 35
LaserFactory (Java class), 37
LaserFactory(Studio) (Java constructor), 37
LIVE (Java field), 35
liveModeStarted(LiveModeEvent) (Java method), 43
logDebugMessage(String) (Java method), 31
logError(Exception, String) (Java method), 32
logMessage(String) (Java method), 32

M
MainGUI (Java class), 36
MMLaser (Java class), 39
MMLaser(Studio, String, String, double, double, double)

(Java constructor), 39
MonitorGUI (Java class), 48
MonitorGUI(Coordinator, String, String, String, String,

double) (Java constructor), 49
MonitorTask (Java class), 50
MonitorTask(MonitorGUI, AnalysisWorker, Control-

Worker) (Java constructor), 50
MonitorWorker (Java class), 51
MonitorWorker(MonitorGUI, AnalysisWorker, Control-

Worker) (Java constructor), 51

N
newImageAcquired(DataProviderHasNewImageEvent)

(Java method), 52
NewImageWatcher (Java class), 52
NewImageWatcher(Object, AnalysisWorker) (Java con-

structor), 52
NEXT_ACQUISITION (Java field), 35

O
onPluginSelected() (Java method), 34

P
p_realtime_plot_parent (Java field), 48

pb_laser_power (Java field), 48
printLoadedDevices() (Java method), 28

Q
queryAnalyzerForBatchOutput() (Java method), 43
queryAnalyzerForIntermittentOutput() (Java method), 43

R
requestStop() (Java method), 43, 47
run() (Java method), 43, 44, 51

S
saveLog() (Java method), 32
scheduleExecution(long, long) (Java method), 45, 51
selectDevice(String) (Java method), 38
selectProperty(String) (Java method), 38
setContext(Studio) (Java method), 34
setControlWorkerTickRate(int) (Java method), 28
setCurrentROI() (Java method), 28, 47
setLaserPower(double) (Java method), 36, 40, 41
setLaserPowerDeadzone(double) (Java method), 29, 38
setLaserPowerDisplayMax(double) (Java method), 49
setLaserVirtual(boolean) (Java method), 29, 38
setLastImageCoords(Coords) (Java method), 44
setLatestDatastore(Datastore) (Java method), 52
setMaxLaserPower(double) (Java method), 29, 39
setROI(Roi) (Java method), 44
setRoiStatus(boolean) (Java method), 49
setSetpoint(double) (Java method), 47
setStopped() (Java method), 49
setStudio(Studio) (Java method), 32
setUp() (Java method), 33
showError(Exception, String) (Java method), 32
showMessage(String) (Java method), 32
startWorkers(ImagingMode) (Java method), 29
stopWorkers() (Java method), 29

T
testAddToLog_3args_1() (Java method), 33
testAddToLog_3args_2() (Java method), 33
testAddToLogNoOverwrite() (Java method), 33

U
updateAnalyzerDescription(String) (Java method), 49
updateFPS(int) (Java method), 50
updateLaserPowerDisplay(double) (Java method), 50
updateLastAnalysisDuration(int) (Java method), 50
updatePlot(GraphData) (Java method), 50

V
VirtualLaser (Java class), 40
VirtualLaser(Studio, String, String, double, double) (Java

constructor), 40

60 Index


	Quickstart
	Parameter Explanations
	Photodynamics Simulations with ALICA and SASS
	Extending ALICA
	Frequently Asked Questions
	Javadoc
	About
	Acknowledgments
	See Also

