

ALICA

Automated Laser Illumination Control Algorithm

	Quickstart

	Parameter Explanations

	Photodynamics Simulations with ALICA and SASS

	Extending ALICA

	Frequently Asked Questions

	Javadoc

About

[image: ALICA running on a stream of images from a super-resolution fluorescence microscopy experiment.]
[image: The ALICA setup window.]
[image: Block diagram describing the key flow of data through ALICA's core components.]
ALICA is an open-source Micro-Manager [https://www.micro-manager.org/] plugin for real-time control
of single molecule photodynamics using adaptive illumination. In
particular, ALICA enables autonomous super-resolution fluorescence
imaging using techniques such as STORM and PALM 1
2 3.

ALICA works by analyzing the incoming images during an acquisition to
produce an estimate of the number of fluorescence emitting molecules
in a region of interest. The estimates are then fed into a control
system that automatically adjusts the illumination intensity to
maintain the optimum density of emitting molecules for the desired
application. Example applications include

	STORM and PALM super-resolution fluorescence microscopy

	in vitro single molecule assays

	single particle tracking

A primary design goal of ALICA is extensibility.
A minimal
knowledge of the Java programming language will allow you to write
your own analyzers for deriving quantitative information from an image
stream and controllers for implementing closed-loop feedback for your
hardware. As a Micro-Manager [https://www.micro-manager.org/] plugin, ALICA easily integrates with
many types of cameras and illumination sources.

ALICA was designed and written by Marcel Stefko and Kyle M. Douglass
in the Laboratory of Experimental Biophysics [https://leb.epfl.ch] at the EPFL to
automate the lab’s STORM and PALM microscopes.

For more information, please see the FAQ or
Javadoc

Acknowledgments

Thanks

	The Laboratory of Experimental Biophysics [https://leb.epfl.ch] and Suliana Manley

	The École Polytechnique Fédérale de Lausanne [http://epfl.ch/]

	Micro-Manager [https://www.micro-manager.org/] and the Micro-Manager community

	AutoLase [https://micro-manager.org/wiki/AutoLase] by Seamus
Holden and Thomas Pengo

	QuickPALM [http://imagej.net/QuickPALM] by Ricardo Henriques, et
al.

	SpotCounter [http://imagej.net/SpotCounter] by Nico Stuurman

Authors

	Marcel Stefko [https://github.com/MStefko]

	Kyle M. Douglass [https://github.com/kmdouglass]

See Also

	SASS [http://sass.readthedocs.io/en/latest/] - STORM Acquisition
Simulation Software

Footnotes

	1

	M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit
imaging by stochastic optical reconstruction microscopy
(STORM)”, Nature Methods 3, 793-796
(2006). http://www.nature.com/nmeth/journal/v3/n10/abs/nmeth929.html

	2

	E. Betzig, et al., “Imaging intracellular fluorescent
proteins at nanometer resolution,” Science 313, 1642-1645
(2006). http://science.sciencemag.org/content/313/5793/1642

	3

	S. T. Hess, T. P. K. Girirajan, and M. D. Mason,
“Ultra-high resolution imaging by fluorescence
photoactivation localization microscopy,” Biophysical
Journal 91, 4258-4272
(2006). http://www.sciencedirect.com/science/article/pii/S0006349506721403

Quickstart

This page describes a brief tutorial on how to install and begin
working with ALICA. It necessarily avoids any details on how ALICA
works; instead, its focus is on helping you become acquainted with
working with ALICA.

Installation

Micro-Manager 2

If Micro-Manager [https://www.micro-manager.org/wiki/Version_2.0] 2.0 or greater is not already installed on your
machine, then follow the steps in this section.

	Navigate to
https://valelab4.ucsf.edu/~MM/nightlyBuilds/2.0.0-gamma/Windows/
and download the latest nightly build for your system. (Note that
ALICA currently only works with Micro-Manager 2.0gamma, NOT
2.0beta.)

	Install Micro-Manager by following the directions provided on the
previously mentioned website. Make note of the installation
directory, which on Windows is usually something like C:\Program
Files\Micro-Manager-2.0.

ALICA

ALICA is distributed as a .jar file and is easily installed by copying
the file into the Micro-Manager plugins folder.

	Navigate to https://github.com/MStefko/ALICA/releases and download
the ALICA*.jar file corresponding to the latest release.

	Copy ALICA*.jar to the MM2ROOT/mmplugins directory, where
MM2ROOT/ is the Micro-Manager installation directory.

	Navigate to https://github.com/LEB-EPFL/ALICA_ACPack and download
the ALICA_ACPack*.jar file corresponding to the latest release.

	If you are using ALICA_ACPack version 0.2.0 or later, you will need
to update a few jars that Micro-Manager uses. Download
imglib2-5.3.0.jar from
http://maven.imagej.net/service/local/repositories/releases/content/net/imglib2/imglib2/5.3.0/imglib2-5.3.0.jar
and imglib2-roi-0.5.1.jar from
http://maven.imagej.net/service/local/repositories/releases/content/net/imglib2/imglib2-roi/0.5.1/imglib2-roi-0.5.1.jar
and place them in the pluginsMicro-Manager folder inside the
Micro-Manager installation directory. Delete the older versions of
imglib2 and imglib2-roi that are already located there.

	Copy ALICA_ACPack*.jar to the MM2ROOT/mmplugins directory, where
MM2ROOT/ is the Micro-Manager installation directory.

	Verify that ALICA was installed and recognized by starting
Micro-Manager and selecting Plugins > Device Control > ALICA in
the Micro-Manager menu bar. (ALICA will not be located in the
ImageJ menu bar.) The ALICA Setup window should appear, which will
verify that ALICA is properly installed.

[image: An example of the ALICA setup window that will appear if ALICA was properly installed.]

Using ALICA

ALICA reads an image stream from Micro-Manager and uses these images
to estimate the real-time density of fluorescence emitting molecules
within the microscope’s field of view. As the estimated density of
emitting fluorophores changes (due to bleaching or changes in the
sample, for example), ALICA will automatically adjust the laser power
to maintain a set emitter density.

Step 1: Select an image source

First, select a source for the image stream that ALICA will
analyzer. Your options include

	the Micro-Manager core, which contains unprocessed images from the
camera;

	the Micro-Manager Live mode, which contains the images that appear
in Micro-Manager’s Snap/Live View window. These images may be
preprocssed by Micro-Manager’s On-The-Fly Image Processors;

	the next Multi-Dimensional Acquisition.

We suggest choosing the Live mode option when you are just
starting to use ALICA because it is the most interactive option.
During actual acquisitions, MM Core is recommended due
to its superior performance, unless you need
to perform some image preprocessing using the MicroManager
processing pipeline before feeding the images to ALICA.

[image: Select the source of the image stream.]

Step 2: Select and configure the analyzer

An analyzer is an algorithm that estimates the density of fluorophores
that are visible in an image. At the time of this writing, ALICA
included the following analyzers

	a spot counter, which counts the number of fluorescent spots in the
images;

	AutoLase, an algorithm which estimates fluorophore densities by
identifying the single pixel within the field of view that has been
above a given threshold for the longest time;

	QuickPALM [http://imagej.net/QuickPALM], a tool which identifies fluorescent spots and then
performs a subpixel localization of each spot;

	an integrator, which simply computes the integrated intensity of an
image.

The spot counter performs well for many samples and also offers a
live view which provides real-time visual feedback of which spots it
identifies.

[image: The region of the setup window for selecting and configuring the analyzer.]

Step 3: Select and configure the controller

A controller is a feedback loop that adjusts the laser power so that
the estimated density of emitters remains as close as possible to a
previously determined set point. The difference between the current
estimate and the set point is called the error signal. The choice of
controllers includes

	a proportional-integral (PI) controller, which responds both
proportionately to the error signal and to the time integral of the
error signal;

	a manual controller, which gives control over the laser to the
microscopist;

	an inverter, which adjusts the laser by a factor that is
proportional to the inverse of the error signal (e.g. high error
signal > low laser power and vice versa);

	a self-tuning (PI) controller, which uses a pulse of laser light to
estimate the optimum values for the P and I parameters.

We recommend starting with manual control to first learn how the
analyzer responds to changes in your sample. Once you understand a
little bit about this, you can try a self-tuning PI
controller. The self-tuning PI controller can only tune itself when
the sample is already under STORM or PALM imaging conditions. For
direct STORM, this means that the fluorophores should already be
blinking.

[image: The region of the setup window for selecting and configuring the controller.]

Step 4: Select the device to be controlled

A device and its property that corresponds to output power needs to be
specified for the controller to actually do something. In most STORM
and PALM experiments, the density of emitters is typically controlled
using an ultraviolet laser. To be able select this laser, it needs to
be added to the current Micro-Manager hardware configuration. Once the
laser is selected, choose its power setting from the next drop-down
menu.

To prevent a run-away laser illumination, you can set the maximum
power for the controller. We typically do not set this above a few
tens of milliWatts, but the actual value depends on the sample.

If you are testing ALICA and do not want to select a device, then
check the Virtual checkbox. This will instruct the controller that
it should not affect the state of any hardware devices. Checking it
will allow you to test ALICA’s analyzers without performing any
hardware control.

[image: The region of the setup window for selecting and configuring the laser device.]

Step 5: Start the monitor

When ready, click Start in the ALICA Setup window. This will open
the ALICA monitor window, which will look similar to the image below.

[image: The ALICA Monitor window]
In the upper left, you can find a readout on the currently selected
analyzer, controller, and laser. In this example image, the analyzer
is the SpotCounter, controller is a PI controller, and the device is
actually not set, i.e. the Virtual checkbox was checked in the ALICA
Setup window.

Below this box you can set the desired density of fluorophores in the
New setpoint: text box. After typing in a new value, click Set to
activate the change. If you draw a region of interest (ROI) in the
Snap/Live View window, you can set ALICA to only analyze this region
by clicking the Set ROI button. You can also drag this ROI around
the the Snap/Live View window in real-time and ALICA will respond in
real-time.

Moving further down the left-hand side of the ALICA Monitor window,
you will find information on the number of frames processed by the
analyzer per second and the time taken to analyze the last frame. You
may also close the ALICA Monitor window in this section by clicking
the Stop button.

In the middle of the ALICA Monitor window on the top is a real-time
plot of the output of the analyzer as a function of time. The units on
the y-axis of this plot will depend on the output of the analyzer. For
example, the SpotCounter outputs a number of spots, but AutoLase will
output the longest “On” pixel in units of time.

Below this plot you may update the analyzer settings.

Finally, on the far right of the ALICA Monitor window is a status bar
that reflects the current output of the laser. The maximum value of
the status bar is the maximum value set in the ALICA Setup window.

Step 6: Start taking images

When you are ready, start taking images using the source of images
that you set in the ALICA Setup window. For example, if you selected
Live mode, then all you need to do is start a Live stream in
Micro-Manager. The different parts of the ALICA Monitor window will
begin to reflect the output of the analyzer and controller once images
begin arriving in this stream.

If the controller was set to Manual, try adjusting the ultraviolet
laser power and watching how the output of the analyzer changes in
response. If you are using a PI controller, you may notice a slight
oscillation in the readout of the analyzer. This is caused by the
particular values you have set for P and I.

If you selected a self-tuning PI controller, Micro-Manager will pulse
the laser a short time after the acquisition has started and observe
how the density of fluorophores changes in response to the pulse. It
will then determine the optimum values for P and I. You may set the
set point after the controller has tuned itself.

[image: Example of ALICA running during an image acquisition.]

What’s next?

Tuning the parameters in ALICA may take some time and experimentation,
even with the self-tuning controller. Tuning may not be easy to do on
real samples due to time constraints and costly sample
preparations. To ease this process, we created a simulation
environment to help you learn how ALICA works.

You may read about how to setup this environment on the simulation page.

Parameter Explanations

Image Source

ALICA offers 3 different options of acquiring images from MicroManager:

	MM Core Images are drawn directly from the circular buffer. This
method is the fastest, and recommended in most cases, since it can
smoothly function whenever the camera is acquiring images.

	Live mode Images are drawn from the Datastore associated with
the current live mode view. Use this if you wish to do some
on-the-fly processing using the MicroManager pipeline, before
passing the image to Analyzer.

	Next acquisition Images will be drawn from the Datastore
associated with the first acquisition that is started afterwards.

ROI

Using the live view, you can select a region of interest to constrain
the analyzed area (for example if the density of fluorophores is
uneven, or the analysis of full image takes too long).

Controller tick rate

This value in milliseconds defines how often the Controller queries
the Analyzer, and adjusts the laser output.

Laser

	Max Power Maximal power setpoint of the laser. ALICA will not
adjust the laser power above this value.

	Deadzone [%] The minimum adjustment to the power setpoint that
the controller may make as a percentage of the current
value. Adjustments to the laser by an amount less than this are not
permitted, which prevents unnecessary fine-tuning of the laser.

	Virtual If checked, the output is not passed to the
device. Useful for debugging or preview of parameters.

Photodynamics Simulations with ALICA and SASS

Extensibility is a core design principle of ALICA. If the builtin
components do not suit the needs of your application, then you can
write your own set of tools using the frameworks of ALICA and
Micro-Manager [https://www.micro-manager.org/]. Alternatively, you may find that ALICA already suits
your needs but you need to do some testing in a controlled environment
prior to using it in your measurements. We developed the STORM
Acquistion Simulation Software (SASS [https://github.com/MStefko/SASS]) to assist in both of these
situations.

This document explains how to setup SASS to test ALICA in a fully
controlled simulation environment.

Install the Simulation Environment

SASS and ALICA are both distributed as Java .jar files. In addition to
these you will need to download our Image Injector plugin, a
Micro-Manager plugin which allows you to simulate acquistions by
feeding images from a .tif file into the Micro-Manager live window. To
install these files, you simply download the latest .jar from the
Releases page of the respective projects and copy the files into the
appropriate directories.

Micro-Manager 2

Before starting, you need the latest nightly build of Micro-Manager
2.0 (or higher).

	Go to https://www.micro-manager.org/wiki/Version_2.0 and download
the latest nightly build for your system.

	Install Micro-Manager. Make note of the installation directory
since you will need it later to install the .jar files.

ALICA

	Navigate to https://github.com/MStefko/ALICA/releases and download
ALICA.jar from the latest release.

	Copy ALICA.jar to the MM2ROOT/mmplugins directory, where MM2ROOT
refers to the installation directory of Micro-Manager.

SASS

SASS is a Fiji plugin and is not intended to work with the same copy
of ImageJ that is used by Micro-Manager. This is because SASS has its
own internal copy of ALICA that conflicts with Micro-Manager’s copy.

Do not install SASS in the same directory as Micro-Manager.

Instead, we will install SASS in a separate Fiji installation.

	If you have not already done so, download a copy of Fiji from
http://fiji.sc/ and unpack it. Make note of the directory in which
you installed it.

	Navigate to https://github.com/MStefko/SASS/releases and download
SASS_VERSION.jar from the latest release. VERSION will vary
depending on the latest release.

	Copy the SASS .jar file to FIJIROOT/plugins directory, where
FIJIROOT is the installation directory of Fiji. (Note that the
folder this time is plugins, not mmplugins.)

Image Injector Plugin

	Go to https://github.com/MStefko/ImageInjectorPlugin/releases and
download the ImageInjector.jar file from the latest release.

	Copy the .jar file to the MM2ROOT/mmplugins directory.

Simulation Workflow

The workflow goes as follows:

	Use SASS to simulate a time series image stack of a PALM or STORM
experiment and save the stack as a .tif file.

	Use the Image Injector Plugin to feed the images in the stack into
the Micro-Manager live window.

	Run ALICA in virtual mode and observe how it responds to the
simulated conditions in the image stack.

Step 1: Simulate a PALM/STORM Experiment with SASS

If you do not already have a .tif file of a time series image stack
from a PALM/STORM experiment, you can simulate one by following the
steps in this section.

	Launch Fiji.

	Verify that the SASS plugin is recognized by Fiji and runs by
clicking to Plugins > SASS > GUI in the ImageJ menu bar.

[image: Location of SASS in the ImageJ Plugins menu item]

	The GUI configuration window for the SASS simulation environment
should appear. Select your parameters for the simulation. A full
description of the simulation parameters is outside the scope of
this documentation. However, you will want to set the Controller
setting to Manual since we want only a simple simulation where
we manually select the laser power.

[image: Set the Controller option to Manual and remember the value for the Max output parameter]

	Remember the value for the Max output parameter. This is the
maximum output power of the simulated laser, and you will need it
in a later step.

	Once everything is set, click the Initialize button to initialize
the simulation.

	Set the Set Point value to something smaller than the value of
Max output. This value determines the output power of the
simulated laser.

	When ready, start the simulation by clicking the Start
button. This will begin to populate an image stack with simulated
STORM/PALM images.

[image: Screenshot of the running simulation and the Micro-Manager and ImageJ windows.]

	You may stop the simulation and change the laser output power by
clicking Stop in the STORMsim window and adjusting the set
point. Click Start to pick up where the simulation left off with
the new laser power.

	Once you have simulated a desired number of images in the stack,
save the image stack by navigating to File > Save As > Tiff… in
the ImageJ menu bar.

From this point you have two options for further exploration. You can
use SASS to directly test the different analyzers and controllers. Or,
you can continue further to directly test ALICA in a simulated
Micro-Manager acquisition.

Step 2: Setup the Image Injector Plugin

Once you have a .tif stack, the next step is to setup the image
injector to simulate a Micro-Manager acquisition.

	Launch Micro-Manager. Select the MM Demo configuration when
prompted to select a hardware configuration. (This Quickstart
assumes that you are running Micro-Manager as an ImageJ plugin,
which is the most common behavior.)

	Open the On-The-Fly Processor Pipeline window by navigating to
Plugins > On-The-Fly Image Processing > Configure Processors…
in the Micro-Manager menu bar.

[image: Click the Configure Processors... item in the Micro-Manager Plugins > On-The-Fly Image Processing menu item.]

	In the window that appears, verify whether an ImageInjector
processor already exists in the pipeline. If not, add one by
clicking + Add… > ImageInjector.

[image: The configuration window for the On-The-Fly Image Processing]

	Click the Configure… button for the ImageInjector processor.

	In the dialog that appears, click the Choose file… button and
select the .tif stack of images to inject.

	We find that it helps to set the Frames per second value to
something small during your initial tests, such as 5.

	Click OK when you are finished configuring the processor. You may
close the configuration window at this point.

	Click the Live button in the Micro-Manager GUI window or in the
Snap/Live View window if it’s already open. You should now see the
images from the .tif stack stream through the Snap/Live View
window.

	You can stop and restart the live stream at will. The stream will
cycle back to the start of the image stack once the end is reached.

Step 3: Launch ALICA in Virtual Mode

Now that Micro-Manager has been setup to stream pre-generated images
through its Snap/Live View window, we can launch ALICA and run it in
virtual mode.

	Navigate to Plugins > Device Control > ALICA in the Micro-Manager
menu bar.

	Select Live mode as the Image source and check the Virtual box
under the options for the control device.

[image: Settings to run ALICA in virtual mode.]

	Click Start. This will open the monitor window which provides
real-time reports about the ALICA’s operation, such as fluorophore
density estimates and the laser power.

	Click the Live button in the main Micro-Manager GUI window. You
should see the reports in ALICA’s Monitor window respond to changes
in the images streaming through the Snap/Live View window. If you
don’t immediately see any change in the monitors, try stopping and
starting Live mode again in the Snap/Live View window.

[image: The ALICA monitor window provides real-time feedback on the estimated density of fluorophores.]

	When you want to close the Monitor window, click Stop in the
Monitor window.

What’s Next?

Now that everything is setup, here are some further things that we
recommend playing with to better understand how ALICA works.

	Check the Live view checkbox in the SpotCounter analyzer settings
for a live view of the identified spots.

	Change the Analyzer from SpotCounter to AutoLase or QuickPALM for
ways to estimate fluorophore densities in the images.

	Try ALICA’s virtual mode on actual experimental image stacks.

	Restrict the fluorophore density estimates to a subregion of the
images by selecting a rectangular region in the Snap/Live View and
clicking the Set ROI button in the ALICA Monitor window. The best
way to see how this works is to use Spot Counter’s Live view
setting. You can even drag the region around the field of view and
watch the changes reflected in the SpotCounter’s live view in
real-time.

	Use SASS to directly test different Analyzer and Controller
settings outside of ALICA.

Extending ALICA

This page describes how you can develop your own
ALICA Analyzer or Controller to suit your needs.

This page will guide you through the process of
creating your own Analyzer, but applies as well
to creating a Controller.

General knowledge of Java programming is assumed and recommended.

Required JDK version: 1.6.0_31 (Same as MicroManager’s)

Implementing a custom Analyzer

Step 1: Importing the Analyzer interface

First, download the ALICA_dev.jar file from the relevant
release [https://github.com/MStefko/ALICA/releases],
and include it as a resource of your project (in NetBeans,
add it to Project Properties -> Libraries -> Compile-time Libraries
using the Add JAR/Folder button). This jar file contains all ALICA libraries,
as well as necessary MicroManager and ImageJ libraries.

In the same pane, you have to ensure that your JDK version is 1.6
(same as MicroManager’s).

[image: NetBeans project properties with proper JDK and ALICA library.]

Step 2: Implementing the Analyzer and its Setup/Status panels

Implement the Analyzer interface from package ch.epfl.leb.alica, and
extend the AnalyzerSetupPanel and (optionally) AnalyzerStatusPanel
abstract classes from package ch.epfl.leb.alica.analyzers. Check the
API documentation for details. You can
also consult the source code for already implemented Analyzers
on GitHub [https://github.com/MStefko/ALICA/tree/master/src/ch/epfl/leb/alica/analyzers].

[image: Implementing the Analyzer interface.]
To give a little bit of intuition, the AnalyzerSetupPanel
serves as a Builder for Analyzers. In the Panel, the user can modify
initial settings of the Analyzer. When ALICA Start button is clicked,
the initAnalyzer() method is triggered, which builds the Analyzer. This
Analyzer can provide a AnalyzerStatusPanel, which (if provided) is embedded
in the ALICA monitor GUI, and allows further interaction with the Analyzer.

In NetBeans, it is easier to first create a Swing JPanel form,
implement user input fields, and then finally change the
implements javax.swing.JPanel declaration to
extends ch.epfl.leb.alica.analyzers.AnalyzerSetupPanel,
and implement the required methods (similarly for StatusPanel).

[image: Implementing the AnalyzerSetupPanel abstract class.]

Step 3: Compiling the created Analyzer

Once all required functionality is implemented, compile the project into a
.jar file. Remember, that the jar filename must start with ALICA_,
e.g. ALICA_MyOwnAnalyzer.jar. Place this jar file into the mmplugins/
folder of MicroManager.

[image: Placing the compiled jar file into the mmplugins folder.]
When you launch ALICA, all added Analyzers and Controllers should be
accessible via their respective dropdown menus.

[image: The new analyzer can be found in the dropdown menu.]

Frequently Asked Questions

General

Doesn’t AutoLase already do autonomous illumination control for STORM/PALM?

AutoLase [https://micro-manager.org/wiki/AutoLase] was developed for one particular use-case: automated PALM
imaging of relatively sparse bacteria populations on microscopes with
small fields of view. In more general conditions, AutoLase can
completely fail to maintain an optimum illumination for STORM/PALM
imaging because it cannot easily distinguish between true fluorescence
signals and those from other sources such as fiducial markers, dust,
or sample autofluorescence. Recent advances that extend PALM/STORM to
large fields of view 1 further compound these problems because
the chances of capturing a signal from a foreign source are greatly
increased. Simply put, AutoLase cannot adequately account for sample
heterogeneity.

Recognizing that every sample has different illumination requirements
and varying degrees of noise, we developed ALICA as an extensible,
robust, and general-purpose tool for autonomous illumination control
in PALM/STORM experiments.

How do I do determine the value for the set point?

The set point is the value from the analyzer that the controller tries
to maintain. Because of this, the meaning of the set point will vary
depending on the analyzer you choose. For example, the set point for
the spot counter is in units of number of spots per \(100 \, \mu
m \times 100 \, \mu m\).

A pretty good way to empirically find the set point for any analyzer
is to perform a STORM or PALM experiment and manually adjust the laser
powers until your sample is blinking optimally. Then, use the
real-time plot in the upper right of the ALICA Monitor window and take
the y-value of the curve as the approximate value for the set
point. This value is highlighted in the figure below:

[image: You can use the real-time graph in the ALICA monitor window to help determine the optimum set point.]

Software-specific

What version of Micro-Manager should I use?

ALICA was designed to work with Micro-Manager 2.0 or greater. See the
Micro-Manager 2.0 [https://www.micro-manager.org/wiki/Version_2.0] website for more information.

Why doesn’t ALICA work properly when SASS is installed?

SASS is a Fiji plugin providing a simulation environment that is used
to develop and test ALICA. Because of this, the SASS .jar file
contains a completely independent copy of ALICA which competes with
Micro-Manager’s copy, producing unexpected behavior.

For this reason, we highly recommend installing SASS with an
installation of Fiji that is independent of the copy of ImageJ used by
Micro-Manager and ALICA.

Footnotes

	1

	K. M. Douglass et al., “Super-resolution imaging of multiple
cells by optimized flat-field epi-illumination,” Nature
Photonics 10, 705-708
(2016). http://www.nature.com/nphoton/journal/v10/n11/full/nphoton.2016.200.html
; Z. Zhao et al., “High-power homogeneous illumination for
super-resolution localization microscopy with large
field-of-view,” Optics Express 25, 13382-13395
(2017). https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-12-13382
; R. Diekmann, et al., “Chip-based wide field-of-view
nanoscopy,” Nature Photonics 11, 322-328
(2017). https://www.nature.com/nphoton/journal/v11/n5/abs/nphoton.2017.55.html

Javadoc

	ch.epfl.leb.alica
	AlicaCore

	AlicaCore.AlreadyInitializedException

	AlicaLogger

	AlicaLoggerTest

	AlicaPlugin

	ImagingMode

	Laser

	MainGUI

	MainGUI.AlreadyInitializedException

	ch.epfl.leb.alica.lasers
	LaserFactory

	MMLaser

	VirtualLaser

	ch.epfl.leb.alica.workers
	AnalysisWorker

	ControlTask

	ControlWorker

	Coordinator

	Grapher

	MonitorGUI

	MonitorTask

	MonitorWorker

	NewImageWatcher

ch.epfl.leb.alica

	AlicaCore

	AlicaCore.AlreadyInitializedException

	AlicaLogger

	AlicaLoggerTest

	AlicaPlugin

	ImagingMode

	Laser

	MainGUI

	MainGUI.AlreadyInitializedException

AlicaCore

	
public final class AlicaCore

	The core’s settings are controlled by MainGUI, and the Core then produces products from its factories, and initializes the Coordinator, and later terminates it.

	Author

	stefko

Methods

getAnalyzerFactory

	
public AnalyzerFactory getAnalyzerFactory()

	
	Returns

	AnalyzerFactory

getControllerFactory

	
public ControllerFactory getControllerFactory()

	
	Returns

	ControllerFactory

getInstance

	
public static AlicaCore getInstance()

	Returns the singleton instance, or an exception if it was not yet initialized

	Returns

	the singleton instance of the core

getLaserFactory

	
public LaserFactory getLaserFactory()

	
	Returns

	LaserFactory

initialize

	
public static AlicaCore initialize(Studio studio)

	Initialize the Singleton core

	Parameters

	
	studio – MicroManager studio

	Throws

	
	AlreadyInitializedException – if it was already initialized

	Returns

	the singleton instance of the core

isCoordinatorRunning

	
public boolean isCoordinatorRunning()

	Checks if the stop flag of the coordinator was set.

	Returns

	true if coordinator’s stop flag was set, or if coordinator is null

printLoadedDevices

	
public void printLoadedDevices()

	Print all loaded devices in the MMCore to the log.

setControlWorkerTickRate

	
public void setControlWorkerTickRate(int controller_tick_rate_ms)

	Sets the tick rate for the controller.

	Parameters

	
	controller_tick_rate_ms – delay between two runs of the ControlTask

setCurrentROI

	
public boolean setCurrentROI()

	Sets currently selected ROI to the analyzer when it is initialized

	Returns

	true if ROI is set, false if no ROI is set

setLaserPowerDeadzone

	
public void setLaserPowerDeadzone(double laser_power_deadzone)

	Sets the deadzone of change of laser power output. For example, if set to 0.1, the laser would ignore requests for change of power that would be different by less than 10% from current output power.

	Parameters

	
	laser_power_deadzone – deadzone size (NOT in percent)

setLaserVirtual

	
public void setLaserVirtual(boolean is_laser_virtual)

	Inform factories that the laser should only display its output, not really communicate with the hardware.

	Parameters

	
	is_laser_virtual – true if virtual, false if real

setMaxLaserPower

	
public void setMaxLaserPower(double max_laser_power)

	Inform factories of maximal laser power value.

	Parameters

	
	max_laser_power – maximal laser power value

startWorkers

	
public void startWorkers(ImagingMode imaging_mode)

	Builds products from their factories using current settings, and starts the Coordinator (analysis is started)

	Parameters

	
	imaging_mode –

stopWorkers

	
public void stopWorkers()

	Requests the coordinator to stop and then waits for it to join.

AlicaCore.AlreadyInitializedException

	
public static class AlreadyInitializedException extends RuntimeException [http://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html]

	Thrown if a double initialization is requested

Constructors

AlreadyInitializedException

	
public AlreadyInitializedException(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] message)

	
	Parameters

	
	message – exception message

AlicaLogger

	
public class AlicaLogger

	The ALICA logger logs analyzer and controller outputs during an acquisition.

	Author

	Marcel Stefko

Methods

addBatchedOutput

	
public void addBatchedOutput(int frame_no, double value)

	Add batched output of analyzer into the log.

	Parameters

	
	frame_no –

	value – value of the output

addControllerOutput

	
public void addControllerOutput(int frame_no, double value)

	Add output of controller into log

	Parameters

	
	frame_no –

	value – value of the output

addIntermittentOutput

	
public void addIntermittentOutput(int frame_no, double value)

	Add intermittent output of analyzer into log

	Parameters

	
	frame_no –

	value – value of the output

addSetpoint

	
public void addSetpoint(int frame_no, double setpoint)

	Add setpoint of controller into log

	Parameters

	
	frame_no –

	setpoint – value of the output

addToLog

	
public void addToLog(int frame_no, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] value_name, double value)

	Add a parameter into the log.

	Parameters

	
	frame_no – The acquisition frame number for this log entry.

	value_name – name of parameter

	value – value of parameter

addToLog

	
public void addToLog(int frame_no, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] value_name, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] value)

	Add a parameter into log

	Parameters

	
	frame_no –

	value_name – name of parameter

	value – value of parameter

clear

	
public final void clear()

	Resets logger, removes all data.

getInstance

	
public static AlicaLogger getInstance()

	
	Returns

	AlicaLogger singleton

getLogMap

	
public LinkedHashMap [http://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html]<Integer [http://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html], LinkedHashMap [http://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html]<String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html], Object [http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html]>> getLogMap()

	Returns the current log.

	Returns

	The current log stored by this logger.

logDebugMessage

	
public void logDebugMessage(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] message)

	Log message to MicroManager or to a general logger

	Parameters

	
	message – message to be logged

logError

	
public void logError(Exception [http://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html] exc, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] message)

	Log exception in MicroManager or in general logger

	Parameters

	
	exc – exception to be logged

	message – message to be logged

logMessage

	
public void logMessage(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] message)

	Log message to MicroManager or to a general logger.

	Parameters

	
	message – The message to be logged.

saveLog

	
public boolean saveLog()

	Saves the log into a csv file chosen by file selection dialog.

	Returns

	true if save was successful, false otherwise

setStudio

	
public void setStudio(Studio studio)

	Set studio to allow general logging.

	Parameters

	
	studio – MMStudio

showError

	
public void showError(Exception [http://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html] exc, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] message)

	Show exception in MicroManager or in ImageJ

	Parameters

	
	exc – exception to be shown

	message – message to be shown

showMessage

	
public void showMessage(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] message)

	Show message in MicroManager or in ImageJ

	Parameters

	
	message – message to be logged

AlicaLoggerTest

	
public class AlicaLoggerTest

	Unit tests for the ALICA logger class.

	Author

	Kyle M. Douglass

Methods

setUp

	
public void setUp()

	

testAddToLogNoOverwrite

	
public void testAddToLogNoOverwrite()

	Test of addToLog method, of class AlicaLogger.

testAddToLog_3args_1

	
public void testAddToLog_3args_1()

	Test of addToLog method, of class AlicaLogger.

testAddToLog_3args_2

	
public void testAddToLog_3args_2()

	Test of addToLog method, of class AlicaLogger.

AlicaPlugin

	
public class AlicaPlugin implements MenuPlugin, SciJavaPlugin

	MicroManager2.0 MenuPlugin for automated laser illumination intensity control.

	Author

	Marcel Stefko

Methods

getCopyright

	
public String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] getCopyright()

	
	Returns

	plugin copyright

getCore

	
public AlicaCore getCore()

	
	Returns

	singleton core of ALICA plugin

getHelpText

	
public String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] getHelpText()

	

getName

	
public String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] getName()

	
	Returns

	name of the plugin

getSubMenu

	
public String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] getSubMenu()

	
	Returns

	Sub-menu location of the plugin

getVersion

	
public String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] getVersion()

	
	Returns

	current plugin version

onPluginSelected

	
public void onPluginSelected()

	Display the MainGUI singleton if it was hidden, if it doesn’t exist, initialize it. AlicaCore must be initialized before calling this method.

setContext

	
public void setContext(Studio studio)

	Initialize the AlicaCore, if it already exists, do nothing.

	Parameters

	
	studio – MMStudio

ImagingMode

	
public enum ImagingMode

	Possible ways for the plugin to grab images from micromanager.

	Author

	Marcel Stefko

Enum Constants

GRAB_FROM_CORE

	
public static final ImagingMode GRAB_FROM_CORE

	Query directly the MMCore getLastImage() method.

LIVE

	
public static final ImagingMode LIVE

	Get images from the Datastore associated with live() mode.

NEXT_ACQUISITION

	
public static final ImagingMode NEXT_ACQUISITION

	Get images from the Datastore which is associated with the next acquisition that will be started.

Laser

	
public interface Laser

	Laser recieves input from the controller and adjusts the laser power accordingly.

	Author

	Marcel Stefko

Methods

getDeviceName

	
public String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] getDeviceName()

	
	Returns

	unique device name (assigned by MicroManager)

getLaserPower

	
public double getLaserPower()

	Asks the hardware for current actual value of laser power

	Throws

	
	Exception [http://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html] – if error occurred during communication with hardware

	Returns

	actual laser power value

getLaserPowerCached

	
public double getLaserPowerCached()

	Returns cached value of laser power, without querying the hardware for actual value.

	Returns

	cached laser power value

getMaxPower

	
public double getMaxPower()

	
	Returns

	maximal allowed value of laser power

getMinPower

	
public double getMinPower()

	
	Returns

	minimal allowed value of laser power

getPropertyName

	
public String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] getPropertyName()

	
	Returns

	unique device property name (assigned by MicroManager)

setLaserPower

	
public double setLaserPower(double desired_power)

	Set the laser power to desired value

	Parameters

	
	desired_power – desired laser power value

	Throws

	
	Exception [http://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html] – if error occurred during communication with hardware

	Returns

	actual laser power value

MainGUI

	
public final class MainGUI extends JFrame [http://docs.oracle.com/javase/8/docs/api/javax/swing/JFrame.html]

	Main controlling GUI for the ALICA plugin. This is a singleton which is shown every time the plugin is invoked from MM menu.

	Author

	Marcel Stefko

Methods

getInstance

	
public static MainGUI getInstance()

	
	Returns

	the GUI singleton instance

initialize

	
public static MainGUI initialize(AlicaCore core)

	Singleton initializer

	Parameters

	
	core – AlicaCore singleton

	Returns

	the GUI instance

MainGUI.AlreadyInitializedException

	
public static class AlreadyInitializedException extends RuntimeException [http://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html]

	Thrown if the GUI singleton is attempted to be initialized for a second time.

Constructors

AlreadyInitializedException

	
public AlreadyInitializedException(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] message)

	
	Parameters

	
	message – message of the exception.

ch.epfl.leb.alica.lasers

	LaserFactory

	MMLaser

	VirtualLaser

LaserFactory

	
public final class LaserFactory

	LaserFactory

	Author

	Marcel Stefko

Constructors

LaserFactory

	
public LaserFactory(Studio studio)

	Initialize the factory with the MM studio

	Parameters

	
	studio –

Methods

build

	
public Laser build()

	Build the laser using the current state

	Returns

	initialized Laser

getPossibleLasers

	
public StrVector getPossibleLasers()

	Query the MMCore for list of loaded devices

	Returns

	StrVector list of loaded devices in the core

getSelectedDeviceName

	
public String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] getSelectedDeviceName()

	
	Returns

	currently selected device identifier

getSelectedDeviceProperties

	
public StrVector getSelectedDeviceProperties()

	Query the MMCore for properties of the selected device

	Throws

	
	Exception [http://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html] – if hardware communication fails

	Returns

	StrVector list of properties

selectDevice

	
public void selectDevice(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] name)

	Select a device

	Parameters

	
	name – unique device identifier from the MMCore

selectProperty

	
public void selectProperty(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] property)

	Select a property of the currently selected device

	Parameters

	
	property – unique property identifier from MMCore

setLaserPowerDeadzone

	
public void setLaserPowerDeadzone(double laser_power_deadzone)

	Sets the deadzone of change of laser power output. For example, if set to 0.1, the laser would ignore requests for change of power that would be different by less than 10% from current output power.

	Parameters

	
	laser_power_deadzone – deadzone size (NOT in percent)

setLaserVirtual

	
public void setLaserVirtual(boolean is_laser_virtual)

	If true, create a VirtualLaser, otherwise a MMLaser

	Parameters

	
	is_laser_virtual –

setMaxLaserPower

	
public void setMaxLaserPower(double max_laser_power)

	Sets upper boundary for laser output, higher inputs from controller will be constrained.

	Parameters

	
	max_laser_power –

MMLaser

	
public class MMLaser implements Laser

	A MicroManager laser implementation

	Author

	Marcel Stefko

Constructors

MMLaser

	
public MMLaser(Studio studio, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] device_name, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] property_name, double min_power, double max_power, double laser_power_deadzone)

	Initialize the MicroManager laser

	Parameters

	
	studio – MMStudio

	device_name – MM identifier of the device

	property_name – MM identifier of the property to be controlled

	min_power – minimal allowed property value

	max_power – maximal allowed property value

	laser_power_deadzone – deadzone of laser power change requests

Methods

getDeviceName

	
public String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] getDeviceName()

	

getLaserPower

	
public double getLaserPower()

	

getLaserPowerCached

	
public double getLaserPowerCached()

	

getMaxPower

	
public double getMaxPower()

	

getMinPower

	
public double getMinPower()

	

getPropertyName

	
public String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] getPropertyName()

	

setLaserPower

	
public double setLaserPower(double desired_power)

	

VirtualLaser

	
public class VirtualLaser implements Laser

	A virtual laser which does not actually output the values to the laser, only to the GUI and the debug MM log.

	Author

	Marcel Stefko

Constructors

VirtualLaser

	
public VirtualLaser(Studio studio, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] device_name, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] property_name, double min_power, double max_power)

	Initialize the virtual laser

	Parameters

	
	studio – MMStudio

	device_name – MM identifier of the device

	property_name – MM identifier of the property to be controlled

	min_power – minimal allowed property value

	max_power – maximal allowed property value

Methods

getDeviceName

	
public String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] getDeviceName()

	

getLaserPower

	
public double getLaserPower()

	

getLaserPowerCached

	
public double getLaserPowerCached()

	

getMaxPower

	
public double getMaxPower()

	

getMinPower

	
public double getMinPower()

	

getPropertyName

	
public String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] getPropertyName()

	

setLaserPower

	
public double setLaserPower(double desired_power)

	

ch.epfl.leb.alica.workers

	AnalysisWorker

	ControlTask

	ControlWorker

	Coordinator

	Grapher

	MonitorGUI

	MonitorTask

	MonitorWorker

	NewImageWatcher

AnalysisWorker

	
public class AnalysisWorker extends Thread [http://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html]

	This thread continuously queries either the MMCore, or the processing pipeline of the live mode for new images, and calls the analyzer’s processImage() method on them as fast as it can. Always the latest image is taken for analysis, so it is possible for images to be skipped. It also gathers some statistics for display by the GUI.

	Author

	Marcel Stefko

Constructors

AnalysisWorker

	
public AnalysisWorker(Coordinator coordinator, Studio studio, Analyzer analyzer, ImagingMode imaging_mode)

	Initialize the worker.

	Parameters

	
	coordinator – parent Coordinator

	studio – for logging and image queries

	analyzer – this Analyzer’s processImage() method is called on gathered images

	imaging_mode –

Methods

acquisitionEnded

	
public void acquisitionEnded(AcquisitionEndedEvent evt)

	If the imaging mode is NEXT_ACQUISITION, the coordinator will asked to stop.

	Parameters

	
	evt – acquisition stopped

acquisitionStarted

	
public void acquisitionStarted(AcquisitionStartedEvent evt)

	If the imaging mode is NEXT_ACQUISITION, the NewImageWatcher will be informed.

	Parameters

	
	evt – new acquisition started event

getAnalyzerShortDescription

	
public String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] getAnalyzerShortDescription()

	Returns the current description of the analyzer’s output.

	Returns

	A string describing the analyzer’s current output.

getCurrentFPS

	
public int getCurrentFPS()

	
	Returns

	number of analyzed frames in the last second

getCurrentImageCount

	
public int getCurrentImageCount()

	
	Returns

	number of analyzed frames since last counter reset, which could be either caused by live mode start, or acquisition start.

getLastAnalysisTime

	
public long getLastAnalysisTime()

	
	Returns

	duration of last analysis in milliseconds

getNewImageFromCoreAndAnalyze

	
public void getNewImageFromCoreAndAnalyze()

	Acquire the new image directly from MMCore and send for analysis.

	Throws

	
	java.lang.InterruptedException [http://docs.oracle.com/javase/8/docs/api/java/lang/InterruptedException.html] – if waiting is interrupted

getNewImageFromWatcherAndAnalyze

	
public void getNewImageFromWatcherAndAnalyze()

	Grabs new images from the Datastore associated with the NewImageWatcher, analyzes it.

	Throws

	
	java.lang.InterruptedException [http://docs.oracle.com/javase/8/docs/api/java/lang/InterruptedException.html] –

liveModeStarted

	
public void liveModeStarted(LiveModeEvent evt)

	Called by the MMCore to signalize there is a new live mode. If the imaging mode is LIVE, the NewImageWatcher will be informed.

	Parameters

	
	evt – new live mode event

queryAnalyzerForBatchOutput

	
public double queryAnalyzerForBatchOutput()

	Analyzer’s internal state might change, and the output is passed on to the controller.

	Returns

	batched output of analyzer

queryAnalyzerForIntermittentOutput

	
public double queryAnalyzerForIntermittentOutput()

	Used for GUI rendering.

	Returns

	intermittent output of the analyzer

requestStop

	
public void requestStop()

	Stops the analyzer after finalizing the current analysis.

run

	
public void run()

	

setLastImageCoords

	
 void setLastImageCoords(Coords coords)

	Called by the NewImageWatcher to update last coords

	Parameters

	
	coords – new Coords

setROI

	
public void setROI(Roi roi)

	Set the ROI for Analyzer

	Parameters

	
	roi – ROI to be set

ControlTask

	
 class ControlTask extends TimerTask [http://docs.oracle.com/javase/8/docs/api/java/util/TimerTask.html]

	This TimerTask is run periodically by the ControlWorker

	Author

	Marcel Stefko

Constructors

ControlTask

	
public ControlTask(AnalysisWorker analysis_worker, Controller controller, Laser laser)

	Initialize the ControlTask

	Parameters

	
	analysis_worker – AnalysisWorker which will be queried for output

	controller – Controller to which output of AnalysisWorker is fed

	laser – Laser to which output of Controller is fed

Methods

getLastControllerOutput

	
public double getLastControllerOutput()

	
	Returns

	last controller output

run

	
public void run()

	

ControlWorker

	
public class ControlWorker extends Timer [http://docs.oracle.com/javase/8/docs/api/java/util/Timer.html]

	A Timer which schedules a task that regularly queries the AnalysisWorker for batched output, and passes it on to the controller, then gets the controller’s output and passes it on to the laser.

	Author

	Marcel Stefko

Constructors

ControlWorker

	
public ControlWorker(AnalysisWorker analysis_worker, Controller controller, Laser laser)

	Initialize the ControlWorker

	Parameters

	
	analysis_worker – AnalysisWorker which will be queried for output

	controller – Controller to which output of AnalysisWorker is fed

	laser – Laser to which output of Controller is fed

Methods

getLastControllerOutput

	
public double getLastControllerOutput()

	
	Returns

	last controller output

scheduleExecution

	
public void scheduleExecution(long delay_ms, long period_ms)

	The task of this worker will be executed regularly.

	Parameters

	
	delay_ms – initial delay

	period_ms – period of the task

Coordinator

	
public class Coordinator

	Coordinates workhorses of the analysis.

	Author

	Marcel Stefko

Constructors

Coordinator

	
public Coordinator(Studio studio, Analyzer analyzer, Controller controller, Laser laser, ImagingMode imaging_mode, int controller_tick_rate_ms, Roi ROI, boolean headless)

	Initialize the coordinator

	Parameters

	
	studio – MM studio

	analyzer –

	controller –

	laser –

	imaging_mode –

	controller_tick_rate_ms –

	ROI – roi for analyzer

Methods

dispose

	
public void dispose()

	Clear windows opened by analyzers and controllers.

getAnalyzerStatusPanel

	
public AnalyzerStatusPanel getAnalyzerStatusPanel()

	
	Returns

	status panel of associated analyzer

getControllerStatusPanel

	
public ControllerStatusPanel getControllerStatusPanel()

	
	Returns

	status panel of associated controller

getTimeMillis

	
public final long getTimeMillis()

	Returns time in milliseconds since the worker was initialized

	Returns

	elapsed time in milliseconds

isRunning

	
public boolean isRunning()

	True if still running, false if stopped

	Returns

	boolean

requestStop

	
public void requestStop()

	Request the threads to stop.

setCurrentROI

	
public boolean setCurrentROI()

	Get the currently selected ROI in active MM display, and set it as analysis ROI.

	Returns

	true if ROI has been set, false if no ROI is set

setSetpoint

	
public void setSetpoint(double value)

	Set the controller setpoint to value

	Parameters

	
	value – new value of controller setpoint

Grapher

	
 class Grapher

	Wrapped around GraphData for easier processing

	Author

	Marcel Stefko

Constructors

Grapher

	
public Grapher(int n_points)

	Initialize a grapher with set length of point plotting

	Parameters

	
	n_points – no. of points to be plotted

Methods

addDataPoint

	
public void addDataPoint(double value)

	Add the next point to the grapher

	Parameters

	
	value – value to be added

getGraphData

	
public GraphData getGraphData()

	Return GraphData which can then be plotted

	Returns

	GraphData

MonitorGUI

	
public class MonitorGUI extends javax.swing [http://docs.oracle.com/javase/8/docs/api/javax/swing/package-summary.html].JFrame [http://docs.oracle.com/javase/8/docs/api/javax/swing/JFrame.html]

	Display for monitoring the current Coordinator state. This display is controlled by the Coordinator.

	Author

	Marcel Stefko

Fields

l_fps

	
public javax.swing [http://docs.oracle.com/javase/8/docs/api/javax/swing/package-summary.html].JLabel [http://docs.oracle.com/javase/8/docs/api/javax/swing/JLabel.html] l_fps

	

l_laser_power_max

	
public javax.swing [http://docs.oracle.com/javase/8/docs/api/javax/swing/package-summary.html].JLabel [http://docs.oracle.com/javase/8/docs/api/javax/swing/JLabel.html] l_laser_power_max

	

l_last_analysis_duration

	
public javax.swing [http://docs.oracle.com/javase/8/docs/api/javax/swing/package-summary.html].JLabel [http://docs.oracle.com/javase/8/docs/api/javax/swing/JLabel.html] l_last_analysis_duration

	

p_realtime_plot_parent

	
public javax.swing [http://docs.oracle.com/javase/8/docs/api/javax/swing/package-summary.html].JPanel [http://docs.oracle.com/javase/8/docs/api/javax/swing/JPanel.html] p_realtime_plot_parent

	

pb_laser_power

	
public javax.swing [http://docs.oracle.com/javase/8/docs/api/javax/swing/package-summary.html].JProgressBar [http://docs.oracle.com/javase/8/docs/api/javax/swing/JProgressBar.html] pb_laser_power

	

Constructors

MonitorGUI

	
public MonitorGUI(Coordinator coordinator, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] analyzer_name, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] controller_name, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] laser_name, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] analyzer_description, double start_setpoint)

	Creates new form MonitorGUI

	Parameters

	
	coordinator – Coordinator parent

	analyzer_name – name of the used analyzer

	controller_name – name of the used controller

	laser_name – name of the used laser

	analyzer_description – A short description of the analyzer’s units.

	start_setpoint – setpoint value to display at startup

Methods

setLaserPowerDisplayMax

	
public void setLaserPowerDisplayMax(double value)

	Adjust the displayed laser power maximal value and store it for progressbar calculations.

	Parameters

	
	value – max laser power value

setRoiStatus

	
public void setRoiStatus(boolean is_set)

	Update the GUI display of ROI status

	Parameters

	
	is_set – true if ROI is set

setStopped

	
public void setStopped()

	Displays the STOPPED message in GUI.

updateAnalyzerDescription

	
public void updateAnalyzerDescription(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] description)

	Update analyzer description.

	Parameters

	
	description – A short description of the analyzer’s outputs.

updateFPS

	
public void updateFPS(int value)

	Update displayed FPS to new value

	Parameters

	
	value – new value of FPS

updateLaserPowerDisplay

	
public void updateLaserPowerDisplay(double value)

	Update displayed laser power to new value

	Parameters

	
	value – new value of laser power

updateLastAnalysisDuration

	
public void updateLastAnalysisDuration(int duration_ms)

	Update last analysis duration to new value

	Parameters

	
	duration_ms – last analysis duration in ms

updatePlot

	
public void updatePlot(GraphData data)

	Update the plow with new data

	Parameters

	
	data – data to be plotted

MonitorTask

	
 class MonitorTask extends TimerTask [http://docs.oracle.com/javase/8/docs/api/java/util/TimerTask.html]

	This TimerTask updates GUI with recent information from other workers

	Author

	Marcel Stefko

Constructors

MonitorTask

	
public MonitorTask(MonitorGUI gui, AnalysisWorker analysis_worker, ControlWorker control_worker)

	Initialize new task with relevant members

	Parameters

	
	gui – MonitorGUI to be updated

	analysis_worker –

	control_worker –

Methods

run

	
public void run()

	

MonitorWorker

	
public class MonitorWorker extends Timer [http://docs.oracle.com/javase/8/docs/api/java/util/Timer.html]

	Updates GUI with recent information from other workers

	Author

	Marcel Stefko

Constructors

MonitorWorker

	
public MonitorWorker(MonitorGUI gui, AnalysisWorker analysis_worker, ControlWorker control_worker)

	Initialize new worker for monitoring

	Parameters

	
	gui – MonitorGUI to be updated

	analysis_worker –

	control_worker –

Methods

cancel

	
public void cancel()

	

scheduleExecution

	
public void scheduleExecution(long delay_ms, long period_ms)

	The task of this worker will be executed regularly.

	Parameters

	
	delay_ms – initial delay

	period_ms – period of the task

NewImageWatcher

	
 class NewImageWatcher

	The watcher is subscribed to a Datastore by the AnalysisWorker, and then it informs the AnalysisWorker of any new images in the Datastore.

	Author

	Marcel Stefko

Constructors

NewImageWatcher

	
public NewImageWatcher(Object [http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html] object_to_lock, AnalysisWorker thread_to_notify)

	

Methods

getLatestDatastore

	
public Datastore getLatestDatastore()

	

newImageAcquired

	
public void newImageAcquired(DataProviderHasNewImageEvent evt)

	Notify the thread that new image is available and send it the coords.

	Parameters

	
	evt – event containing coords

setLatestDatastore

	
public void setLatestDatastore(Datastore store)

	Sets the latest datastore, and registers for its events.

	Parameters

	
	store –

Index

 A
 | B
 | C
 | D
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

A

 	
 	acquisitionEnded(AcquisitionEndedEvent) (Java method)

 	acquisitionStarted(AcquisitionStartedEvent) (Java method)

 	addBatchedOutput(int, double) (Java method)

 	addControllerOutput(int, double) (Java method)

 	addDataPoint(double) (Java method)

 	addIntermittentOutput(int, double) (Java method)

 	addSetpoint(int, double) (Java method)

 	addToLog(int, String, double) (Java method)

 	
 	addToLog(int, String, String) (Java method)

 	AlicaCore (Java class)

 	AlicaLogger (Java class)

 	AlicaLoggerTest (Java class)

 	AlicaPlugin (Java class)

 	AlreadyInitializedException (Java class), [1]

 	AlreadyInitializedException(String) (Java constructor), [1]

 	AnalysisWorker (Java class)

 	AnalysisWorker(Coordinator, Studio, Analyzer, ImagingMode) (Java constructor)

B

 	
 	build() (Java method)

C

 	
 	cancel() (Java method)

 	ch.epfl.leb.alica (package)

 	ch.epfl.leb.alica.lasers (package)

 	ch.epfl.leb.alica.workers (package)

 	clear() (Java method)

 	
 	ControlTask (Java class)

 	ControlTask(AnalysisWorker, Controller, Laser) (Java constructor)

 	ControlWorker (Java class)

 	ControlWorker(AnalysisWorker, Controller, Laser) (Java constructor)

 	Coordinator (Java class)

 	Coordinator(Studio, Analyzer, Controller, Laser, ImagingMode, int, Roi, boolean) (Java constructor)

D

 	
 	dispose() (Java method)

G

 	
 	getAnalyzerFactory() (Java method)

 	getAnalyzerShortDescription() (Java method)

 	getAnalyzerStatusPanel() (Java method)

 	getControllerFactory() (Java method)

 	getControllerStatusPanel() (Java method)

 	getCopyright() (Java method)

 	getCore() (Java method)

 	getCurrentFPS() (Java method)

 	getCurrentImageCount() (Java method)

 	getDeviceName() (Java method), [1], [2]

 	getGraphData() (Java method)

 	getHelpText() (Java method)

 	getInstance() (Java method), [1], [2]

 	getLaserFactory() (Java method)

 	getLaserPower() (Java method), [1], [2]

 	getLaserPowerCached() (Java method), [1], [2]

 	getLastAnalysisTime() (Java method)

 	
 	getLastControllerOutput() (Java method), [1]

 	getLatestDatastore() (Java method)

 	getLogMap() (Java method)

 	getMaxPower() (Java method), [1], [2]

 	getMinPower() (Java method), [1], [2]

 	getName() (Java method)

 	getNewImageFromCoreAndAnalyze() (Java method)

 	getNewImageFromWatcherAndAnalyze() (Java method)

 	getPossibleLasers() (Java method)

 	getPropertyName() (Java method), [1], [2]

 	getSelectedDeviceName() (Java method)

 	getSelectedDeviceProperties() (Java method)

 	getSubMenu() (Java method)

 	getTimeMillis() (Java method)

 	getVersion() (Java method)

 	GRAB_FROM_CORE (Java field)

 	Grapher (Java class)

 	Grapher(int) (Java constructor)

I

 	
 	ImagingMode (Java enum)

 	initialize(AlicaCore) (Java method)

 	
 	initialize(Studio) (Java method)

 	isCoordinatorRunning() (Java method)

 	isRunning() (Java method)

L

 	
 	l_fps (Java field)

 	l_laser_power_max (Java field)

 	l_last_analysis_duration (Java field)

 	Laser (Java interface)

 	LaserFactory (Java class)

 	
 	LaserFactory(Studio) (Java constructor)

 	LIVE (Java field)

 	liveModeStarted(LiveModeEvent) (Java method)

 	logDebugMessage(String) (Java method)

 	logError(Exception, String) (Java method)

 	logMessage(String) (Java method)

M

 	
 	MainGUI (Java class)

 	MMLaser (Java class)

 	MMLaser(Studio, String, String, double, double, double) (Java constructor)

 	MonitorGUI (Java class)

 	
 	MonitorGUI(Coordinator, String, String, String, String, double) (Java constructor)

 	MonitorTask (Java class)

 	MonitorTask(MonitorGUI, AnalysisWorker, ControlWorker) (Java constructor)

 	MonitorWorker (Java class)

 	MonitorWorker(MonitorGUI, AnalysisWorker, ControlWorker) (Java constructor)

N

 	
 	newImageAcquired(DataProviderHasNewImageEvent) (Java method)

 	NewImageWatcher (Java class)

 	
 	NewImageWatcher(Object, AnalysisWorker) (Java constructor)

 	NEXT_ACQUISITION (Java field)

O

 	
 	onPluginSelected() (Java method)

P

 	
 	p_realtime_plot_parent (Java field)

 	
 	pb_laser_power (Java field)

 	printLoadedDevices() (Java method)

Q

 	
 	queryAnalyzerForBatchOutput() (Java method)

 	
 	queryAnalyzerForIntermittentOutput() (Java method)

R

 	
 	requestStop() (Java method), [1]

 	
 	run() (Java method), [1], [2]

S

 	
 	saveLog() (Java method)

 	scheduleExecution(long, long) (Java method), [1]

 	selectDevice(String) (Java method)

 	selectProperty(String) (Java method)

 	setContext(Studio) (Java method)

 	setControlWorkerTickRate(int) (Java method)

 	setCurrentROI() (Java method), [1]

 	setLaserPower(double) (Java method), [1], [2]

 	setLaserPowerDeadzone(double) (Java method), [1]

 	setLaserPowerDisplayMax(double) (Java method)

 	setLaserVirtual(boolean) (Java method), [1]

 	setLastImageCoords(Coords) (Java method)

 	
 	setLatestDatastore(Datastore) (Java method)

 	setMaxLaserPower(double) (Java method), [1]

 	setROI(Roi) (Java method)

 	setRoiStatus(boolean) (Java method)

 	setSetpoint(double) (Java method)

 	setStopped() (Java method)

 	setStudio(Studio) (Java method)

 	setUp() (Java method)

 	showError(Exception, String) (Java method)

 	showMessage(String) (Java method)

 	startWorkers(ImagingMode) (Java method)

 	stopWorkers() (Java method)

T

 	
 	testAddToLog_3args_1() (Java method)

 	
 	testAddToLog_3args_2() (Java method)

 	testAddToLogNoOverwrite() (Java method)

U

 	
 	updateAnalyzerDescription(String) (Java method)

 	updateFPS(int) (Java method)

 	
 	updateLaserPowerDisplay(double) (Java method)

 	updateLastAnalysisDuration(int) (Java method)

 	updatePlot(GraphData) (Java method)

V

 	
 	VirtualLaser (Java class)

 	
 	VirtualLaser(Studio, String, String, double, double) (Java constructor)

 _static/ajax-loader.gif

_images/alica_setup_analyzer.png
ALICA Setup

ALICA

Automated Laser lllumination Control Algorithm

Image source

® MM Core

) Live mode ROI: Not set ‘ Set ROI ‘

) Next acquisition Controller tick rate [msl: | 500
48 Il I I == = | .
IAnalyZer: SpotC... |v Controller: [PI > Laser: |Core v
" - -

Noise tolerance: CI | P: 1.0/ -
R Max power: 50

I Box size: 5 I 1 1.0/ s P ‘ |
I I Deadzone [%]: 10|
I I []virtual
I []Live view I
ﬁ.ﬂ L_¥.. | I” F Lol ' l Start | Print Loaded Devices Exit |

_static/comment.png

_images/alica_setup_controller.png
ALICA

ALICA Setup

Automated Laser lllumination Control Algorithm

Image source
® MM Core

) Live mode

) Next acquisition

Analyzer: |SpotC... |+
Noise tolerance: 80
Box size: 5

[]Live view

| Save last run log

-

ROI: Not set

Controller tick rate [ms]: |
Il I BN B B B .
Controller: [PI v|

P: 1.0 -

I: 1.0, 1/s

L * %’Loaded Devices

‘ Set ROI ‘

500
Laser: |Core
1
i M [50
ax power:
1
I Deadzone [%]: 10|
[]virtual
1
1
Exit

_static/down-pressed.png

_images/alica_monitor_window.png
279

000

000

000

Framespersecond: 5
Lastanalyss: 12 ms

Running...

50.00

00

_static/comment-bright.png

_images/alica_new_analyzer.png
(2] ALICA Setup

ALICA
Automated Laser llumination Control Algrithm

Inage source
®micore

O tive mode

Savelastrunlog

ROL: Not set set oL

Controler tckrate ms]: 500

Controler: [Seffuni..

Options for caibration wil
be displayed after launch...

start

Max power:

Deadzone [%]:

[Jvetal

Print Loaded Devices

EY

_static/comment-close.png

_images/alica_setup_imagesource.png
ALICA Setup

ALICA

Automated Laser Illlumination Control Algorithm
4 BN BN B B B ..

i Image source l«

® MM Core

I) Live mode I ROI: Not set l Set ROI ‘
I) Next acquisition I Controller tick rate [msl: | 500
I I I BN B .
Analyzer: |SpotC... |« Controller: [PI > Laser: |Core v
v
Noise tolerance: 80 P: 1.0/ -
— b Max power: 50
Box size: 5 = 1.0 s ‘ |

Deadzone [%]: 10|
[]virtual

[]Live view

Save last run log Start Print Loaded Devices Exit

_images/alica_setup_virtualmode.png
ICA Setup

ALICA
Automated Laser lllumination Control Algorithm
Image source
© MM Core
® Live mode ROL: Not set Set ROI
) Next acquisition Controller tick rate [ms]: 500]
Analyzer: |SpotC... |v Controller: Pl - Laser: | Core v
Noise tolerance: 80| P: 1.0 -
f— o Maxpower: [50
Box size: 5 10 us b
Deadzone [%]: 10|
[Live view
Save last run log Start. Print Loaded Devices Exit

_images/alica_setup_default.png
ICA Setup

ALICA
Automated Laser lllumination Control Algorithm
Image source
© MM Core
 Live mode ROL: Not set Set ROI
) Next acquisition Controller tick rate [ms]: 500]
Analyzer: |SpotC... |v Controller: Pl - Laser: | Core v
Noise tolerance: 80| P: 1.0 -
f— o Maxpower: [50
Box size: 5 10 us b
Deadzone [%]: 10|
[virtual
[Live view
Save last run log Start. Print Loaded Devices Exit

_static/down.png

_images/alica_setup_device.png
ALICA Setup

ALICA

Automated Laser Illlumination Control Algorithm

Image source

® MM Core
) Live mode ROI: Not set ‘ Set ROI
) Next acquisition Controller tick rate [ms]: P —— =
Analyzer: |SpotC... |« Controller: [PI v ‘ I Laser: |Core v ‘
i vl
Noise tolerance: 80 P: 1.0/ - I
— 5 Max power: 50
Box size: 5 E 10l s I
Deadzone [%]: 10,
I [virtual
[]Live view :
r i I BN BN . I
| Save last run log Start Print Loaded Devices Exit

_images/imagej_pluginsmenu_sass.png
Macros
shorteuts

Utiities

New

Compile and Run,

Install Ctrl+ Shift+M
Install Flugin.

1 STORMsim
3D Viewer

Anahze
BigDataviewer
Bio-Formats

Cluster

Color Inspector 3D
Examples

Feature Extraction
HDF5

ImagesD

Integral Image Fiters
Janelia H265 Reader
Loci

LSM Toolbox
Landmarks
Multiview Reconstruction
optic Flow

Process
Registration

sass

Gur

Command Prompt
Segmentation
skeleton

stacks

stitching

Time Lapse
Tracking

Transform

Utiities

Volume Viewer

_images/mm_ontheflyprocessing_configuration.png
On-The-Fly Processor Pipeline

camera
o
Enabled | Snap/Live | Processor Settings &+ Add.
Imageinjector Canfigure

aein = Remove

Move Up
Move Down

Enabled

.
Dataset

processors in
the pipeline are
applied in order
to images
acquired by the
camera.

Process 0Old Data

_images/alica_block_diagram.png
—» Analyzer

Acquired
image

MicroManager
core

o , Laser
~ontroller power
I ———

Microscope

_images/alica_desktop_example.png
g

File Tools Config Plugins Help

File Edit Image Process Analyze Plugins Window Help
B cla|ol<|a|+/s Al |ols| _|slalalal | |-

Profl: Default ser

Configuration settings

imaging settings
@ swopLive o Group Preset
8+ Abum < [camera
aming T Chamnel 5]
B i Aca Lightpath e
B rewen | [Objective fox
= o System Sterun
(] snap/Live View (100%) - o x

s00xe00px 212K Analyzer: SpotCounter £

Controler: P controler

27
loser: VIRVl
Current setpoint 0.00 4 =
o0 1
New setpaint o0 o oo
set
RoL:Notset | setRol
SpotCounter
P 6 Noise tolerance: 80
Lstandyss: 2ms
sox sz s
Running...
STOP. Set eo

0.0000

=18.00:

Data 5.0fps_ Display 5.01es

00um imagein
] [18.] /40201 < > [FPs 100

]

) s e] | G A | [F D ruiseeen || &

. T:20PM
6/16/2017

@

_images/alica_monitor_setpoint.png
Analyzer: SpotCounter
Controller: Pl controller

18.56

Laser: VIRTUAL-null »

Current setpoint: 0.00

New setpoint: 0.00|
Set

ROI: Not set Set ROI

Frames per second: 6
Last analysis: 2 ms

Running...

STOP

0.00

ALICA'Monitor:

0.00

SpotCounter

Noise tolerance:

Box size:

Set

99.00

G o 2.8

50.00

0.0

0.00

_images/mm_pluginsmenu_onthefly.png
Configure Processors...

Flat-Field Correction
Frame Combiner
Image Flipper
Image Saver
Imagelinjector

Split View

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 ALICA

 		
 Quickstart

 		
 Installation

 		
 Micro-Manager 2

 		
 ALICA

 		
 Using ALICA

 		
 Step 1: Select an image source

 		
 Step 2: Select and configure the analyzer

 		
 Step 3: Select and configure the controller

 		
 Step 4: Select the device to be controlled

 		
 Step 5: Start the monitor

 		
 Step 6: Start taking images

 		
 What’s next?

 		
 Parameter Explanations

 		
 Image Source

 		
 ROI

 		
 Controller tick rate

 		
 Laser

 		
 Photodynamics Simulations with ALICA and SASS

 		
 Install the Simulation Environment

 		
 Micro-Manager 2

 		
 ALICA

 		
 SASS

 		
 Image Injector Plugin

 		
 Simulation Workflow

 		
 Step 1: Simulate a PALM/STORM Experiment with SASS

 		
 Step 2: Setup the Image Injector Plugin

 		
 Step 3: Launch ALICA in Virtual Mode

 		
 What’s Next?

 		
 Extending ALICA

 		
 Implementing a custom Analyzer

 		
 Step 1: Importing the Analyzer interface

 		
 Step 2: Implementing the Analyzer and its Setup/Status panels

 		
 Step 3: Compiling the created Analyzer

 		
 Frequently Asked Questions

 		
 General

 		
 Doesn’t AutoLase already do autonomous illumination control for STORM/PALM?

 		
 How do I do determine the value for the set point?

 		
 Software-specific

 		
 What version of Micro-Manager should I use?

 		
 Why doesn’t ALICA work properly when SASS is installed?

 		
 Javadoc

 		
 ch.epfl.leb.alica

 		
 AlicaCore

 		
 AlicaCore.AlreadyInitializedException

 		
 AlicaLogger

 		
 AlicaLoggerTest

 		
 AlicaPlugin

 		
 ImagingMode

 		
 Laser

 		
 MainGUI

 		
 MainGUI.AlreadyInitializedException

 		
 ch.epfl.leb.alica.lasers

 		
 LaserFactory

 		
 MMLaser

 		
 VirtualLaser

 		
 ch.epfl.leb.alica.workers

 		
 AnalysisWorker

 		
 ControlTask

 		
 ControlWorker

 		
 Coordinator

 		
 Grapher

 		
 MonitorGUI

 		
 MonitorTask

 		
 MonitorWorker

 		
 NewImageWatcher

_static/minus.png

_static/plus.png

_images/netbeans_setup_panel_creation.png
B-E-AtFEH|PeR|auen

7

package my.oun.addor

import ch.epfl.leb.alica.Bnalyzer;
import ch.epfl.leb.alica.analyzers.AnalyzerSecupPane:

* Example setup panel
eauthor Marc
/

public class MyownSetupPanellcxcends Analyzersetupanel (

public MyOwnSetupPanel () [(...3 lines)

[7** Tnis method is called from within the constructor to

-6 Lines +/]

@SuppressWarnings ("uncheck=d")

[Generated Codel

// Variables d not modify
private javax.swing.Jlabel jlabell;

/1 Es

claration - d

£ varial

lar.

Goverriae
public Analyzer initAnalyzer() {
return new MyOwnnalyzer () ;

Goverriae
public String getName() {
return "New analyzer!";

_images/placing_jar_in_mmplugins.png
1> ThisPC » 0S(C) > Program Files

Name

AcquireMultipleRegions jor
AUCAjer

ALICA MyOwnAnalyzerjar
ASIiSPIMjar

Autolasejar

CRISP jar

CRISPY2jor

Duplicatorjar
FrameCombinerar
Gaussianjar

> Micro-Manager-2.0beta > mmplugins

Date modified

2017-03-06 2240
2017-06-20 1224
2017-06-20 1230
2017-03-06 2240
2017-03-06 2240
2017-03-06 2240
2017-03-06 2240
2017-03-06 2240
2017-03-06 2240
2017-03-06 2240
2017-03-06 2240
2017-03-06 2240

Type
Exccutable Jar File
Exccutable Jar File
Exccutable Jar File
Exccutable Jar File
Exccutable Jar File
Exccutable Jar File
Exccutable Jar File
Exccutable Jar File
Exccutable Jar File
Exccutable Jar File
Exccutable Jar File
Exccutable Jar File

Size

39K8
25K8
10K8.
478K8
51K8
248
T
13K8
19K8
3968
65K8
14K8

_images/netbeans_analyzer_creation.png
Source | History |

package my.own.addon;

B-E8-AFBHERIPED

1
3| @ import ch.epfl.leb.alica.Analyzer;
3| | import cn.epfl.leb.alica.analyzers.AnalyzerStatusPanel:
s| | import 13.gui.Rei:

& | imporc 13.process.snortprocessor;

7| L imporc java.util.ArrayLisc;

H
s

privace

private double intermittent_output = 0.0;

public MyOwnAnalyzer() {
B

Goverriae
public void processImage (Object image, int image_width, int image_height, doubls

int x_min, x max, y_min, y_max;
30 if (roi == null) {

_static/up.png

_images/netbeans_project_properties.png
@ Project Properties - Alicaddon

]

Java Platform: [10K 1.6 I

Livares Folder:

Compie. processor Run Compie Tests Run Tests

Compile-tine ibraries are propagated to al lbrary categories.

| NN

_images/sass_desktop_example.png
Douglass [|100%

2]

202/202;

o[Tiiegignal
Measured signal

File Edit Image Process A
85.48, y=0.16

icro-Manager 2.0.0-beta3 20170306
Tools Config Plugins Help

Profile: Default user

op.

Image info (fom camera): 0 X 0 X 0 bytes, Intensity range: 0 bits 0 nmipc

_images/sass_options_controller_manual.png
Controller:

Tick rate [frames]:

Max output:

Manual |~

!

!

_static/file.png

